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In quantum key distribution, reconciliation refers
to a post process that extracts two equal binary
strings from quantum raw keys between two authenti-
cated parties before distillation of secret keys via pri-
vacy amplification. In continuous-variable quantum
key distribution (CV-QKD) where coherent states of
light are used instead of single photons [1], this is
important because it is harder for them to extract
and share the same binary strings from continuous
variables relative to an eavesdropper. To quantify
its performance, reconciliation efficiency is defined as
β = R

C , where R denotes code rate and C indicates
Shannon’s channel capacity. Reconciliation efficiency
close to unity at the low signal-to-noise ratio (SNR)
regime is a necessary condition to increase the trans-
mission distance of secret keys.

The early reconciliation scheme, called sliced error
correction [2], relies on quantization to extract dis-
crete information. A challenge arises in the scheme:
it suffers from reduction of β in the low-SNR regime.
It had been one of main bottlenecks against trans-
mission distance of CV-QKD. To cope with it, multi-
dimensional reconciliation (MR) was introduced [3].
It approximates reconciliation to a channel coding
problem on additive white Gaussian noise (AWGN)
channel. It is reported that the combination of MR
and multi-edge type low density parity check (MET-
LDPC) codes can reach beyond 95% at certain, yet
very small SNRs [4].

A natural question that one can ask in this con-
text is it could be improved more. This is a mean-
ingful question since transmission distance depends
significantly on β. MET-LDPC codes are already
optimized for low-rate applications. We believe that
polar codes [5] can be a better option due to its
capacity-achieving property shown for a class of dis-
crete memory channels [5]. In fact, this is not the only
work to apply polar codes on CV-QKD. The authors
in [6] investigated its performance and concluded that
codewords should be longer than MET-LDPC codes

to achieve competitive performance. On the other
hand, there are various polar code construction algo-
rithms on the AWGN channel.

To design polar codes, the precise information on
the status of bit channels is required to carry keys
on good channels. Fixed bits are delivered via bad
channels and used for decoding. However, it is too
expensive to compute the exact information of all bit
channels on the AWGN channel. The evolution of
bounds on Bhattacharyya parameters of bit chan-
nels was used heuristically [7], but the equality of
bounds holds only for binary erasure channel, which
causes inaccurate computation of bit-channel status
on other channels. A Monte-Carlo simulation is pos-
sible for design with better precision [5]. However,
its complexity is also concerned when it comes to
CV-QKD application, which requires very long code-
words for high β. Polar codes tested in [6] were
constructed by the algorithm, called density evolu-
tion, which analyzes how the distribution of the log
likelihood ratio of a bit channel evolves to compute
bounds on the probability of error. Although it can
achieve high accuracy, it comes with significant com-
putational complexity for tracking all distributions.
This is problematic to CV-QKD due to its necessity
of very long codewords.

We propose a new reconciliation protocol that is
computationally much less expensive without criti-
cal loss of precision by Gaussian approximation(GA).
This is possible because it is enough to track only
mean of LLR distributions under GA. In our proto-
col, N independent virtual AWGN channels consist
of multiple blocks of MR phase. Then, polar codes
designed by GA are applied. However, there still ex-
ists a complicated integration function in GA. Previ-
ous algorithms with GA [8, 9] just applied approxi-
mated function developed for LDPC codes [10]. This
heuristic method degrades performance a lot because
the function [10] breaks polar codes as the length in-
creases. To resolve this issue, multi-segment GA was
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introduced [11] and used in our protocol.
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Figure 1: Estimated reconciliation efficiency of the pro-
posed protocol with block error rate BLER = 0.1 and
different lengths N

Another advantage of GA is that it can estimate
block error rate (BLER). Hence, β can be evalu-
ated before actually measured by decoders. The esti-
mated reconciliation efficiencies are shown in Figure
1 with various lengths and BLER = 0.1. There is a
wide region where reconciliation efficiency is greater
than 90%, which enables long-distance CV-QKD, and
the region is wider than the one in [6] when the
length is equal. Figure 2 shows measured reconcilia-
tion efficiencies of the proposed protocol with recent
work [12] when the length is 210. Polar codes with
R = 0.375 were used in [12]. The proposed proto-
col achieves higher performance compared to [12] at
SNRs less than 1, and this is a positive sign that our
protocol can work well at low SNRs.
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Figure 2: Measured reconciliation efficiency of the pro-
posed protocol and previous work [12] with the length of
N = 210
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