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Abstract

Continuous variable quantum key distribution (CVQKD) has attracted interests of researchers since it is known
that a CVQKD protocol outperforms a discrete quantum key distribution (DVQKD) in terms of the secure key rate.
In this work, we develop a novel CVQKD scheme that introduces photon subtraction operation, thus yielding a
better performance compared to the state of the art. In particular, we demonstrate through numerical analyses that
the proposed protocol supports a longer transmission distance of secure keys.

I. INTRODUCTION

The importance of personal privacy drives the need for secure communication. Quantum key distribution (QKD)
has received considerable attention due to its unconditional security [1]. QKD protocols are categorized into two
parts depending on the type of the distribution of quantum keys: (1) discrete variable QKD (DVQKD); (2) continuous
variable QKD (CVQKD). CVQKD has received more attention as it is shown to outperform an existing DVQKD
protocol [2].

In this paper, we propose a CVQKD protocol utilizing photon subtraction to ensure a longer transmission distance.
The key feature of our protocol is to perform photon subtraction at a receiving end. We find that the photon
subtraction operation plays a role to remove photons induced by an eavesdropper, thus yielding a higher performance.
We also evaluate the performance of the proposed protocol with simulation results and demonstrate that our proposed
protocol outperforms a conventional CVQKD protocol.

We expect that the photon subtraction in a receiver partially removes photons added by an eavesdropper. We also
evaluate performance of the proposed protocol with results of numerical analyses and verify our proposed protocol
outperforms a conventional CVQKD protocol.

II. GENERAL CVQKD

We first review a conventional CVQKD protocol. A general CVQKD protocol utilizes p and q quadratures to
express continuous variables. In the protocol, a transmitter (Alice) generates a two-mode squeezed vacuum (TMSV)
state. Here, p and q quadratures of a TMSV state have the same variance V = VA+1 in shot noise unit where VA is
a variance of Alice’s Gaussian modulation. One half of the TMSV state is captured in a quantum memory. The other
half of the TMSV state is transmitted to a receiver (Bob) through a quantum channel characterized by transmittance
T and noise variance VN . Then, Bob performs homodyne detection with respect to p or q quadrature and announces
his choices of quadratures to Alice through a public channel. After the announcement, Alice performs homodyne
detection with respect to the announced quadratures on the half of the TMSV captured in a quantum memory. This
leads Alice and Bob to share Gaussian correlated data. The data become final secure key after post processing
consisting of error correction and privacy amplification.

III. CVQKD WITH PHOTON SUBTRACTION IN A RECEIVER

Our proposed model has an additional beam splitter having transmittance T1 and a photon resolving detector
in Bob for photon subtraction as shown in Fig. 1. The model generates single photon subtracted quantum states
by collecting states corresponding to single photon detection of the photon resolving detector. In order to analyze
security of the model, we first consider a quantum state generated by the proposed model.

At first, a TMSV state |ψ〉AB prepared by Alice can be represented as follows:

|ψ〉AB0
=

∞∑
n=0

αn |n, n〉AB0
, (1)
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Figure 1: Model for CVQKD with photon subtraction in Bob. HOM and QM stand for homodyne detection and
quantum memory, respectively.

where αn =
√

α2n

(1+α2)n+1 and α2 denotes the mean photon number of the TMSV state. In a similar way, a channel

characterized by an Eve’s TMSV state having mean photon number β2 can be expressed as follows:

|ψ〉E0F
=

∞∑
m=0

βm |m,m〉E0F
, (2)

where βm =
√

β2m

(1+β2)m+1 . Then, a quantum state after a channel having transmittance T can be represented as
follows:

|ψ〉AB1EFC
=

∞∑
n=0

αn

n∑
k=1

(−1)kγn,k
∞∑
m=0

βm

m∑
l=0

γm,l

n−k+l∑
s=0

(−1)sεn−k+l,sK |n, n− k + l, k +m− l,m, s〉AB1EFC

(3)

where γi,j =
√(

i
j

)
T i−j(1− T )j , εi,j =

√(
i
j

)
T i−j1 (1− T1)j , and K =

√(
n−k+l

l

)√(
k+m−l

k

)
.

Applying single photon subtraction on the quantum state represented as in Eq. (3),

|ψ1〉AB2EFC
= − 1

P1

∞∑
n=0

αn

n∑
k=1

(−1)kγn,k
∞∑
m=0

βm

m∑
l=0

γm,l

n−k+l∑
s=0

εn−k+l,1K |n, n− k + l, k +m− l,m, 1〉AB2EFC

(4)

where

P1 =

∞∑
n=0

α2
n

∞∑
m=0

β2m

n∑
k=0

m∑
l=0

K

min{n−k,m−l}∑
j=0

(−1)jγn,kγn,k+jγm,lγm,l+jK+ +

min{k,l}∑
j=1

(−1)jγn,kγn,k−jγm,lγm,l−jK−

 ,

(5)

and K± =
√(

n−k+l
l±j

)√(
k+m−l
k±j

)
.

Based on the quantum state represented in Eq. (4), we can build a covariance matrix VAB and VEFB by using
a method in [3] (due to the page limit, we omit explicit expression), which is used to calculate secure key rate KS

of the proposed model as follows:

KS = P1 (fIAB − χBE) , (6)

where f , IAB , and χBE are the efficiency of error correction, mutual information between Alice and Bob, and
quantum mutual information between Bob and Eve. However, since the quantum state in Eq. (4) is a non-Gaussian
state, it is not tractable to calculate Eq. (6). For the purpose of a tractable calculation, here we utilize the Gaussian
optimality theorem [4]. Specifically we assume that a Gaussian state is generated by the model having the same
covariance matrix of the quantum state in Eq. (4). This then yields a lower bound of secure key rate obtained by
the proposed model. This can be done by changing the photon subtraction operation to a certain Gaussian operation
providing the same covariance matrix of the quantum state in Eq. (4). This makes the calculation of the mutual
information in Eq. (6) tractable.

For the computation of IAB , we calculate VA = 〈ψ1|q̂2A|ψ1〉, VB = 〈ψ1|q̂2B2
|ψ1〉, and CAB = 1

2 〈ψ1|q̂Aq̂B2
+ q̂B2

q̂A|ψ1〉
representing the variance of Alice’s data obtained by measuring a quantum state A, the variance of Bob’s data
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Conventional CVQKD, α2 = 3.8
CVQKD in [5], α2 = 8.9
CVQKD with photon subtraction in Bob, α2 = 1.8

Figure 2: Comparisons for secure key rate of
CVQKD protocols.
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Figure 3: Comparisons for mutual information of
CVQKD protocols. SKR stands for secure key
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obtained by measuring a quantum state B, and the correlation between Alice and Bob, respectively. With the
variances, we can calculate IAB as follows:

IAB =
1

2
log2

VA
VA|B

, (7)

where VA|B is the conditional variance expressed as VA|B = VA − C2
AB/VB .

In case of χBE , we calculate it by applying a method in [5] on VEFB (although we omit explicit expression
due to the page limit, χBE can be calculated with VEFB).

IV. NUMERICAL ANALYSIS RESULTS AND CONCLUSION

For simulations, we set error correction efficiency f , detector efficiency, and mean photon number of channel
β as 0.95, 0.68, and 0.001, respectively. In addition, transmittance T1 of the beam splitter in Bob set as 0.9. For
performance comparison, we simulate secure key rates of a conventional CVQKD and a CVQKD proposed in [5].
The corresponding result is plotted in Fig. 2 where mean photon number of Alice for each protocol is optimized.
From the result, we find that our proposed model can transmit secure keys at a longer distance. Fig. 3 shows IAB
and χBE with respect to distance. At around 100km, even if IAB of the proposed model becomes lower than that of
[5], χBE of the proposed model becomes much lower than that of [5]. This yields a longer secure key transmission.
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