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Abstract—We study the problem of recovering both K com-
munities and their features from a labeled graph observation.
We assume that the edges of an observed graph are generated
as per the symmetric Stochastic Block Model (SBM), and that
the label of each node is a noisy and partially-observed version
of the corresponding community feature. We characterize the
information-theoretic limit of this problem, and then propose a
computationally efficient algorithm that achieves the information-
theoretic limit.

Index Terms—Community recovery, Stochastic Block Model,
Matrix completion, Recommendation algorithms, Signal process-
ing

I. INTRODUCTION

Community recovery has been extensively studied in vari-
ous fields, including mathematics, computer science, machine
learning, and biology [1]. Most of the works focus on the
problem of recovering hidden communities when the graph
structure (nodes and edges) and additional side-information
(node and edge values) is given. However, in many practical
applications, one may want to recover not only hidden commu-
nities but also their features [2]. Motivated by this, we study
the problem of recovering both hidden communities and their
features simultaneously.

As a concrete application of this problem, consider social
recommendation systems [3]. In a social recommendation
system, one is given with 1) rating vector of each user and
2) a social graph of users. Since it is known that the users
of the same community share similar preferences, one may
assume that each community has its own representative rating
vector (i.e. community feature) and that the rating vectors of
its members are noisy observations of the community feature.
For this case, one may want to jointly recover the hidden
communities and their features, with which one can provide
more reliable recommendations to users.

We now briefly describe the problem. We first assume that
n nodes are partitioned into K hidden communities, and each
hidden community is associated with a community feature.
In this work, we assume that community features are m-
dimensional binary vectors. That is, each cluster, say cluster
k, is associated with a m-dimensional binary feature vector
uk ∈ {−1, 1}m. The goal is to recover both the hidden
partition as well as the feature vector of each community from
the observed graph.

The structure of the observed graph G is assumed to follow
the stochastic block model (SBM) [4]. SBM has been proved
to fit a variety of real datasets [5]. In the SBM, edges are
generated independently of the others, and the edge probability
between community i and j is constant, which we denote by
Qi,j . Denoting the community assignment by C : [n]→ [K],
the edge probability between node i and j can be written
as QC(i),C(j). Especially, in this paper, we only consider the
symmetric SBM, i.e.,

Qi,j =

{
α, if i = j,

β, else.
(1)

In addition to the graph structure, we assume that node
features, which are correlated with the corresponding commu-
nity feature, are available. Specifically, the observed feature of
node i, denoted by NΩ(i, :), is a noisy and partially-observed
version of uC(i), i.e.,

NΩ(i, j) :=


uC(i)(j) w.p. p · (1− θ)
−uC(i)(j) w.p. p · θ
0 w.p. (1− p).

(2)

Here, each case represents correctly observed, incorrectly
observed, and unobserved cases in order.

The goal is to exactly recover both the hidden community
structure and the community features. That is, one wants to
recover C (up to permutation) and u’s for K communities.

In this work, we characterize the information-theoretic limit
of exact recovery, and then develop a computationally efficient
algorithm, and show that it achieves the aforementioned limit.

The rest of this paper is organized as follows. In the
rest of this section, we briefly overview related works and
define useful notations. In Sec. II, we present the problem
formulation. Our main theoretical results are presented in
Sec. III and Sec. IV. Finally, we give experimental results with
synthetic data in Sec. V and conclude the paper in Sec. VI.

A. Related works

Community recovery has been extensively studied in the lit-
erature, and we refer the readers to a recent survey of Abbe [6].
Some recent works have taken into account side-information in
addition to the graph structure. For instance, edge weights [7]

2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
Allerton Park and Retreat Center
Monticello, IL, USA, October 2-5, 2018

978-1-5386-6596-1/18/$31.00 ©2018 IEEE 686



and node values [2], [8] are shown to help when finding hidden
communities. However, these problems still aim at recovering
hidden communities only, not community features.

In a recent work [9], the authors firstly study the joint
recovery of community structure and community features.
While they focus on the case of 2 equal-sized communities, we
consider a more general case of K communities of possibly
different sizes. We remark that these extensions are non-trivial:
It requires us to concretely define target space in sequence
level and its topology. For instance, even for extension to
K equal-sized communities, the original framework cannot
be applied since one cannot regulate ‖uXi − uXj ‖0 using
the technique of [9]. Moreover, we have constructed a non-
parametric algorithm, which is guaranteed to succeed exact
recovery a.s., even without knowing ground truth parameters
(α, β, p, θ).

B. Notations

The following notations will be used throughout the paper.
• For any t ∈ N, [t] := {0, 1, 2, . . . , t− 1}.
• Target information, which we want to recover, is denoted

by X := (CX , uX); It is a pair of communities (CX )
and their binary feature vectors (uX ).

• Community assignment function is denoted as CX :
[n]→ [K], and CXk := (CX)−1({k}) (inverse image).

• uXk ∈ {−1, 1}m is a binary feature vector of the kth

community.
• G is an observed graph, drawn from symmetric

SBM(α, β).
• FX ∈ {−1, 1}n×m is a ground truth binary feature

matrix, i.e., FX(i, j) := uXCX(i)(j).
• For given n,m, On,m is the set of all possible observation

with n nodes and m features.
• For given n,m, Xn,m is the set of all possible targets

with n nodes and m features.
• Bold symbols represent sequences, e.g., x := (xi)i∈N
• Parameters are denoted by Γ := (α, β, p, θ, n,m).

II. PROBLEM FORMULATION

We now formally define the featured community recovery
problem. We first define valid parameter sequences. Here,
asymptotic notation is w.r.t. i, e.g., O ⇒ Oi and w ⇒ wi.

Definition 1 (valid parameter (non-target)). A parameter se-
quence Γ := (Γi)i∈N := (αi, βi, pi, θi, ni,mi)i∈N is valid if

ni,mi = w(1),

log(ni) = O(mi), log(mi) = O(ni),

mi · log(mi) = O(ni · log(ni)),

αi = w

(
1

n

)
, αi = O

(
log(ni)

ni

)
, αi > βi, βi = Ω(αi),

pi = Θ

(
log(ni)

mi
+

log(mi)

ni

)
, θi = Ω(1).

Note that this definition implies α, β, p = o(1).
We now define the pseudo-metric topology of target space.

Definition 2 (pseudo-metric topology of target space). For two
targets X = (CX , uX), Y = (CY , uY ) and ∀k ∈ [K], Let P
be the set of all permutations of [K], and ΦEX be the set of all
possible sequence X := (Xi)i∈N For X,Y ∈ ΦEX , distance
function d can be defined as following:

dPC(X,Y ) := max
k∈[K]

|CXk \ CYP (k)|,∀P ∈ P, (3)

dPu (X,Y ) := max
k∈[K]

‖uXk − uYP (k)‖0,∀P ∈ P, (4)

d(X,Y ) := min
P∈P

max

(
dPC(X,Y )

n
,
dPu (X,Y )

m

)
, (5)

d(X,Y ) := lim sup
i→∞

d(Xi, Yi), (6)

where ‖ · ‖0 denotes the hamming distance. One can trivially
check that d satisfies non-negativity, symmetry, subadditivity,
and d(X,X) = 0, but note that it does not satisfy identity of
indiscernibles, which means d is pseudo-metric. However, it
can still define topology.

From now, all statements concerning topology are with
respect to the topology defined in Def. 2. Using this pseudo-
metric, we now can define a ball: Bδ(X) := {Y ∈ ΦEX :
d(X,Y ) < δ}. Similarly, one can also define Bδ(X).

We now define valid target sequences.

Definition 3 (valid target). ΦEX be the set of all possible
sequences X := (Xi)i∈N. Denote cXk := |CXk |, dXi,j :=
‖uXi − uXj ‖0, then X ∈ ΦEX is valid, if it satisfies:

cXk = Ω(n), ∀k ∈ [K], dXj,k = Ω(m), ∀j 6= k ∈ [K]. (7)

Hence, we can assume that

cXk ≥ cX · n, ∀k ∈ [K], (8)

dXj,k ≥ dX ·m,∀j 6= k ∈ [K] (9)

hold for all sufficiently large i. Further, we can define the set
of valid targets ΦX := {X ∈ ΦEX : X is valid}, and show
that it is open: See [10] for the proof. We will assume that the
constraint space is an open sub-space of ΦX .

We now define the error event.

Definition 4 (error events). Consider fixed, and valid non-
target parameter Γ. Sequence of functions ψ, where ψi :
Oni,mi → Xni,mi is called estimator. Ψ is the set of all
possible estimators. The worst-case probability of error under
open constraint space Φ′X ⊂ ΦX , P e

Γ(·|Φ′X) : Ψ → [0, 1] is
defined as following:

P eΓ(ψ|X) := Pr(ψ(G,NΩ) 6= X; (G,NΩ) ∼ D(·|Γ, X)),

P e
Γ(ψ|Φ′X) := sup

X∈Φ′
X

lim sup
i→∞

P eΓi(ψi|Xi),

where D is the distribution of observed variable (G,NΩ) given
Γ and X . Note that the distribution of observed variables are
fully specified by Γ (edge probabilities, noise parameters) and
X (hidden communities, binary feature vectors).

With this definition, one can view the exact recovery prob-
lem under constraint Φ′X given Γ as the problem of finding
an estimator ψ such that P e

Γ(ψ|Φ′X) = 0.
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Definition 5. Open constraint space Φ′X ⊂ ΦX is Γ-solvable
if there exists estimator ψ such that P e

Γ(ψ|Φ′X) = 0.

Finally, our goal is to find the sharp condition of constraint
Φ′X that is solvable, and construct the estimator (in other
word, algorithm) to solve the constrained problem when it
is solvable.

III. ACHIEVABILITY AND INFORMATION LIMIT

In this section, we characterize the sharp phase transition of
the exact recovery. Here, we outline the proof, deferring the
full proof to the supplemental material [10]. We first define
the followings before stating the phase transition.

Definition 6. For given fixed, valid non-target parameter Γ,
we define the following:

IΓ
r := p · (

√
1− θ −

√
θ)2, (10)

IΓ
s := (

√
α−

√
β)2. (11)

Further, function ΛΓ(·) : ΦX → R is defined as follows:

Λi,jΓ (X) :=
cXi,j · IΓ

s + dXi,j · IΓ
r

log(n)
∀i 6= j ∈ [K], (12)

ΛkΓ(X) :=
cXk · IΓ

r

log(m)
, ∀k ∈ [K], (13)

ΛΓ(X) := min({Λi,jΓ (X) : i 6= j ∈ [K]} (14)

∪ {ΛkΓ(X) : k ∈ [K]}), (15)
ΛΓ(X) := lim inf

i→∞
ΛΓi(Xi), (16)

where cXi,j :=
cXi +cXj

2 . Using the above definition, one can
define positive, and negative spaces given valid Γ as following:

ΦΓ,+
X := {X ∈ ΦX : ΛΓ(X) > 1} (17)

ΦΓ,−
X := {X ∈ ΦX : ΛΓ(X) < 1} (18)

Remark 1. Note that by validity, one can check that IΓ
s ·n
IΓ
r ·m

is
bounded, this fact will be used to show Lemma 1.

One can show that

Proposition 1. ΛΓ : ΦX → R is a continuous map.

Proof. We deferred the proof to [10]

Corollary 1. ΦΓ,+
X ,ΦΓ,−

X are both open subspace.

We now are ready to state our main theorem, which sharply
characterizes the phase transition threshold.

Theorem 1. For given valid Γ, Φ′X ⊂ ΦX is Γ-solvable if
and only if Φ′X ∩ ΦΓ,−

X = ∅

Proof: We first outline the proof of the achievability part
and then overview that of the converse part.

Achievability (⇐): The following lemma holds due to the
the property of topology [10].

Lemma 1. if Φ′X ⊂ ΦX : open, and Φ′X ∩ ΦΓ,−
X = ∅, then

Φ′X ⊂ ΦΓ,+
X

Note that the above lemma holds not because ΛΓ is contin-
uous. Intuitively, if the constraint space touches the boundary
({ΛΓ = 1}), then it would have crossed the boundary.

It is enough to show that ∀X ∈ Φ′X ⊂ ΦΓ,+
X ,

lim sup
i→∞

P eΓi(ψ
ML
i |Xi) = 0 (19)

where ψML
i is a maximum likelihood estimator. By definition

of ΦΓ,+
X , ∃ε > 0, for every sufficiently large i,

ΛΓi(Xi) > 1 + ε (20)

Maximizing likelihood is equivalent to minimizing negative
log-likelihood function, which we denoted by L(·).

P eΓ(ψML|X) := Pr(ψML(NΩ, G) 6= X)

= Pr(∃Y 6= X : L(Y ) ≤ L(X);NΩ, G)

= Pr(
⋃
Y ∈Y

L(Y ) ≤ L(X);NΩ, G)

≤
∑
Y ∈Y

Pr(L(Y ) ≤ L(X);NΩ, G)

(21)

where Y := Xni,mi \ {X}.

It is enough to show that RHS of Eq. (21) goes to zero as
i → ∞. Now fix i, thus omit it from subscript. We will split
Y into 3 sets, and show that summation over each set goes to
zero. Define

CYi,j := CXi ∩ CYj (22)

then it is K2-partition of the entire nodes. Next, define

D(Y ) := ‖FX − FY ‖0 (23)

and it can be represented as

D(Y ) =
∑
i,j

|CYi,j | · ‖uXi − uYj ‖0 (24)

With these tools, we can partition Y as following (δ is some
positive constant that we will take for the proof):

Y1 := {Y ∈ Y|∃i, j 6= k ∈ [K] : |CYi,j |, |CYi,k| ≥ δ · n}
∪ {Y ∈ Y|∃i, j 6= k ∈ [K] : |CYj,i|, |CYj,k| ≥ δ · n} (25)

Y2 := {Y ∈ Y \ Y1|∃i ∈ [K] : ‖uXi − uYi ‖0 ≥ δ · n} (26)
Y3 := Y \ Y1 \ Y2 (27)

The following lemma is useful for showing the claim
behind.

Lemma 2. For N1, N2, L ∈ Z+, let {Ai}i∈[N1]
i.i.d∼

Bern(α), {Bi}i∈[N2]
i.i.d∼ Bern(β), {Pi}i∈[L]

i.i.d∼ Bern(p), and

{Θ}i∈[L]
i.i.d∼ Bern(θ). Assume that α, β, p = o(1). Then, for

any l > 0,

Pr(S1 + S2 + S3 ≥ −l)

≤ exp

(
1

2
l − (1 + o(1))

N1 +N2

2
IΓ
s − (1 + o(1)) · L · IΓ

r

)
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where

S1 := cΓ1 · (N2 −N1), S2 := cΓ2

 ∑
i∈[N2]

Bi −
∑
i∈[N1]

Ai


S3 := cΓ3 ·

∑
i∈[L]

Pi(2Θi − 1)

and

cΓ1 := log

(
1− α
1− β

)
, cΓ2 := log

(
α · (1− β)

β · (1− α)

)
,

cΓ3 := log

(
1− θ
θ

)
.

The proof of this Chernoff-based concentration inequality
is deferred to [10], [11].
Remark 2. One can view S1 as the term balancing with each
community size. This term is one of the key differences from
the previous work [9], and it allows us to handle multiple
communities with different sizes.
Remark 3. In company with this lemma, we can take the
upper bound of probability which other target has higher
likelihood than original target. You can find the full proof in
the supplemental material.

Claim 1. Following holds:∑
Y ∈Y1

Pr(L(Y ) ≤ L(X);NΩ, G) = o(1) (28)∑
Y ∈Y2

Pr(L(Y ) ≤ L(X);NΩ, G) = o(1) (29)∑
Y ∈Y3

Pr(L(Y ) ≤ L(X);NΩ, G) = o(1) (30)

By Claim 1, and Eq. (25), exact recovery can be achieved
by ψML.

Converse (⇒): Suppose that X0 ∈ Φ′X ∩ ΦΓ,−
X , and let

ΛΓ(X0) = 1− 3 · ε (31)

Since Φ′X is open, and ΛΓ is a continuous map (by Prop. 1),
we can take δ small enough to make the following holds:

Bδ(X
0) ⊂ Φ′X (32)

∀X ∈ Bδ(X
0),ΛΓ(X) < 1− 2 · ε (33)

Furthermore, by definition of ΛΓ, there is a subsequence S
such that

∀X ∈ Bδ(X
0), i ∈ S,ΛΓi(Xi) < 1− ε (34)

Now, we only consider about above subsequence, and omit i
from the subscript.

Define Bδ := {X ∈ ΦEX : Xi ∈ Bδ(X0
i ),∀i}, then Bδ ⊂

Bδ(X
0) ⊂ Φ′X . For convenience, denote Bδ(X0

i ) as Bi.
Suppose that ∃ψ ∈ Ψ : P e

Γ(ψ|Φ′X) = 0.

P e
Γ(ψ|Φ′X) := sup

X∈Φ′
X

lim sup
i→∞

P eΓi(ψi|Xi)

≥ sup
X∈Bδ

lim sup
i→∞

P eΓi(ψi|Xi)
(35)

and we can also show that

sup
X∈Bδ

lim sup
i→∞

P eΓi(ψi|Xi) ≥ lim sup
i→∞

sup
X∈Bδ

P eΓi(ψi|Xi) (36)

Eq. (36) can be shown by constructing X such that Xi :=
argmaxXi∈BiP

e
Γi

(ψi|Xi), note that Bi is just a finite set. Using
Eq. (35), (36),

P e
Γ(ψ|Φ′X) ≥ lim sup

i→∞
sup
Xi∈Bi

P eΓi(ψi|Xi)

(a)

≥ lim sup
i→∞

EXi∼Unif(Bi)[P
e
Γi(ψi|Xi)]

(b)

≥ lim sup
i→∞

EXi∼Unif(Bi)[P
e
Γi(ψ

ML
i |Bi |Xi)]

(37)

where ψML
i |Bi is maximum a posteriori (MAP) estimator, with

prior Unif(Bi). (a) is simply by max ≥ mean arguement, and
(b) can be checked by the definition of MAP (Lemma 3).

Lemma 3. X ∈ X is a finite random variable, p is the pmf
of X . Y ∈ Y is also a finite random variable, whose pmf is
q(·|X) given X . ψMAP : Y → X is a MAP estimator of X
given Y . Then for any estimator ψ : Y → X ,

EX∼p[Pr(ψ(Y ) 6= X;Y ∼ q(·|X))]

≥EX∼p[Pr(ψMAP (Y ) 6= X;Y ∼ q(·|X))]
(38)

Thus, it is sufficient to show that ψML|B cannot exactly
recover communities and their features. For convenience, we
will omit the subscript i from now.

We first write:

EX∈Unif(B)[P
e
Γ(ψML|B|X)] ≥ min

X∈B
P eΓ(ψML|B|X) (39)

We will now show that

min
X∈B

P eΓ(ψML|B|X) = 1− o(1). (40)

Note that we are actually proving a sufficient condition of the
actual converse statement: When Φ′X ⊂ ΦΓ,−

X 6= ∅, for any
estimator ψ ∈ Ψ, ∃X ∈ Φ′X such that if X is the original
target, then ψ may give wrong answer a.s..

We now present a useful lemma, which can be used to lower
bound the above error probability.

Lemma 4. For K,L ∈ Z+, let {Ai}i∈N
i.i.d∼

Bern(α), {Bi}i∈N
i.i.d∼ Bern(β), {Pi}i∈N

i.i.d∼ Bern(p),
and {Θ}i∈[L]

i.i.d∼ Bern(θ). Assume that α, β, p = o(1), and

max
(√

α · β ·K, p · L
)

= w(1) (41)

Then, for any l > 0

Pr(S2 + S3 ≥ 0))

≥1

4
· exp(−(1 + o(1)) ·K · IΓ

s − (1 + o(1)) · L · IΓ
r )

(42)

where

S2 := cΓ2 ·

∑
i∈[K]

Bi −
∑
i∈[K]

Ai

 , S3 := cΓ3 ·
∑
i∈[L]

Pi(2Θi − 1).
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Note that all the conditions of the above lemma are satisfied
by valid parameters.

We now outline the the proof of Eq. (40). For a complete
proof, see the supplementary material [10]. If ΛkΓ(X) < 1− ε
for some k, we show that there exists another valid candidate,
which can be derived by flipping one entry of the feature
vector, but has higher likelihood than the the correct target
X a.s. Secondly, when Λi,jΓ (X) < 1− ε for some i 6= j, one
can find another candidate in which two nodes in community
i and j are swapped a.s.

Definition 7. We call the boundary between positive and
negative space {ΛΓ = 1} the information-theoretic limit.

Remark 4 (Comparison with the previous work [9]). Setting
K = 2, cX0 = cX1 = n

2 , and dX0,1 = γ ·m exactly recovers the
main result of [9].

A. Intuitive explanation

Behind the formula, we now look into how each parameter
(both target and non-target) makes exact recovery easier or
harder. First, we can see IΓ

s := (
√
α −
√
β)2 may definitely

decide difficulty of the problem, because as α, β are more
similar, it will be harder to detect community from observed
graph. Second, when p decreases, or θ increases (i.e. IΓ

r

decreases), gaining meaningful information from feature ob-
servation becomes harder.

Next, what is the meaning of constraint space touching
(equivalently, crossing) information limit? In other words,
what really happens, when the constraint space overlaps the
negative space (ΦΓ,−

X )? It means that some candidate targets
have too small ΛΓ value. To put it more concretely, one of
ΛkΓ(X) or Λi,jΓ (X) is too small.

It may be hard to detect small community, which implies
constraint should require cXk to be big enough to ΛkΓ not being
too small. On the other hand, when two communities are too
similar, which means their feature vectors are too similar, then
we will get into trouble for differentiating communities with
feature observation. Therefore, the constraint should also force
Λi,jΓ to have some lower bound.

B. Practical aspects

Now, take a look at this results from the view point of
practicality. The question is that among these parameters
(including non-target), what we can manipulate, and what we
cannot? Obviously, we may not be able to change α, β and the
constraint space Φ′X , since they are naturally given. However,
p or θ are adjustable parameters in some applications.
θ is noise parameter, observer sometimes “mis”observe

node feature, thus we can make this better methodologically.
However, in some cases, node feature may be “naturally”
different from the community feature, for instance, user pref-
erence to items will be partially distinct with its representative
community preference, in that case, observer cannot improve
such noise.

The other parameter we can manipulate is p, it is related
to sample complexity. We may try to collect more samples

of node features. For example, most of IT companies are
attempting to gather more information about their users, even
though they usually have very small portions of the entire
features.

Restoring Def. 6, improving p, θ may expand the positive
space to cover the constraint space. See Fig. 1. Furthermore,
Thm. 1 precisely states how much observer should improve
observing conditions.

IV. ALGORITHM AND PERFORMANCE PROOF

In the previous section, we showed that under certain
conditions, maximum likelihood estimator will achieve exact
recovery. However, the MLE is computationally intractable,
and hence in this section, we will provide a polynomial time
complexity algorithm which achieves exact recovery a.s.

A. Comparision with the previous work

The main difference from the algorithm proposed in [9] is
that we precisely found out the proper parameter to guarantee
the exact recovery in non-equal community size case. As we
mentioned in Remark. 2, cΓ1 provide the optimal criteria for
node to be assigned to the community with proper size.

In particular, when all communities have equal size, then
even though algorithm proposed in [9] has no cΓ1 term, it has
been proved to work equivalently, since size differences be-
tween communities attained by step 1 are negligible. However,
otherwise, the algorithm with ĉs, ĉr could not guarantee the
recovery, since those parameters does not take community size
into account.

Indeed, technicality in the proof is very similar with the ear-
lier study [9]. Nonetheless, we stated more general arguments
for extension to the K number of communities, and non-equal
sizes.

B. Algorithm Description

See Algorithm 1 where

LΓ(i, C, u) := −cΓ1 · |C| − cΓ2 · e(i, C)− cΓ3 ·Π(i, u), (43)

Π(i, u) :=
∑
j∈[m]

NΩ(i, j) · u(j), (44)

and

L̂ := LΓ̂, Γ̂ := (α̂, β̂, p̂, θ̂, n,m), (45)

and

α̂ :=

∑
k∈[K] e(C

Y 0

k , CY
0

k )∑
k∈[K]

(|CY 0

k |
2

) , (46)

β̂ :=

∑
k1 6=k2∈[K] e(C

Y 0

k1
, CY

0

k2
)∑

k1 6=k2∈[K] |CY
0

k1
| · |C

kY
0

2
|
, (47)

θ̂ :=
|{(i, j) : uY

CY 0 (i)
(j) = NΩ(i, j)}|

|{(i, j) : NΩ(i, j) 6= 0}|
, (48)

and e(i, C) is defined as the number of edges between node i,
and the set of nodes C. Note that we do not need to estimate
p̂, since LΓ is irrelevant to p.
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positive space ΦΓ,+
X

constraint space Φ′X

information limit ΛΓ = 1

negative space ΦΓ,−
X

Improve observ-
ing conditions

positive space ΦΓ,+
X

constraint space Φ′X

information limit ΛΓ = 1

negative space ΦΓ,−
X

Fig. 1. As improving observing conditions (e.g. collect more samples, make observing accuracy better.), positive space expand to cover the constraint, thus
it makes exact recovery possible.

Algorithm 1 Exact recovery algorithm
Input G: observe graph, NΩ partially observed noisy feature
matrix, T : number of iterations, F : almost exact recovery
algorithm
Output Y : estimator of original community, and feature vector
(X := (CX , uX))

1: procedure EXACT RECOVERY(G,NΩ, T,F)
2: CY

0 ← F(G) . step 1
3: for k ∈ [K] do . step 2
4: for i ∈ [m] do
5: uYk (i)← sign(

∑
t∈CY0

k

NΩ(t, i))

6: end for
7: end for
8: for t ∈ [T ] do . step 3
9: for i ∈ [n] do

10: CY
t+1

(i)← argmink∈[K]L̂(i, CY
t

k , uYk )
11: end for
12: end for
13: return Y := (CY

T

, uY )
14: end procedure

The time complexity of Algorithm 1 is O(T + n ·m · p+
log(n) · n ·m · p ·K)

Remark 5. Line 5 can be seen as majority voting, which means
to pick the value of the feature as the majority of community
members have.

C. Performance Proof

Proof for achievabilty of almost exact recovery by some F
can be found in [12], and actually we can deploy any other
clustering methods in place of F such as spectral cluster-
ing [13]–[15], non-backtracking matrix based methods [16],
semidefinite programming (SDP) [17], and belief propagation
(BP) variants [18]. As same as the previous section we will
provide the outline of the proof, deferring the full proof to the
supplemental materials [10].

Theorem 2. ψ guided by Algorithm 1 exactly recovers X
under constraint Φ′X ⊂ ΦΓ,+

X

Proof: While we go through the proof, following lemma
will be very useful:

Lemma 5. For any 0 < ε < 1, suppose that X ∼ Bin(ε ·n, p).
Then for any k ≥ 2e, one has

Pr

(
X ≥ k · n · p

log 1
ε

)
≤ 2 · exp

(
−k · n · p

2

)
(49)

The proof of this lemma is deferred to [10].

Remark 6. Lemma 5 will be helpful in two cases. In step 2,
it allows to take the upper bound of the number of “noisy”
features. In step 3, it gives the upper bound of the number of
edges to “mis”classified nodes.

On account of, X ∈ Φ′X ⊂ ΦΓ,+
X , for some ε0, and

sufficiently big sequence index (i.e. big n,m), following holds:

ΛkΓ(X),Λi,jΓ (X) > 1 + ε0,∀i 6= j, k ∈ [K] (50)

Almost exact recovery of community (step 1)
For any η > 0, we can get CY

0

from F such that |CY 0

P (k) \
CXk | < η·n,∀k ∈ [K] for some permutation P (without loss of
generality, we may assume that P is an identity permutation).
As we mentioned above, validity of step 1 is proven in the
reference papers.

Note that∑
k∈[K]

|CY
0

k \ CXk | =
∑
k∈[K]

(|CY
0

k | − |CY
0

k ∩ CXk |)

(a)
=
∑
k∈[K]

(|CXk | − |CY
0

k ∩ CXk |)

=
∑
k∈[K]

|CXk \ CY
0

k |

(51)
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(a) is derived from
∑
k∈[K] |CY

0

k | = n =
∑
k∈[K] |CXk |. Thus

for any k, we can derive

|CY
0

k ∩ CXk | =|CXk | − |CXk \ CY
0

k |
≥cXk − η · n

≥cXk
(

1− η

cX

)
= cXk (1−O(η))

(52)

Eq. (52) will be used to prove Claim 3.
Exact recovery of feature vectors (step 2)

What we need to prove is that Pr(uY 6= uX)→ 0.

Pr(uY 6= uX) ≤
∑

(k,i)∈[K]×[m]

Pr(uYk (i) 6= uXk (i)) (53)

so it is enough to show Pr(uYk (i) 6= uXk (i)) = o(m−1),∀k, i
Without loss of generality, assume that uXk (i) = +1, then

Pr(uYk (i) 6= uXk (i)) = Pr(uYk (i) = −1)

= Pr(
∑
j∈CYk

NΩ(j, i) < 0)

≥ Pr(
∑

j∈CY 0

k ∩C
X
k

Pj · (2 ·Θj − 1)

> −
∑

j∈CY 0

k \C
X
k

|Pj · (2Θj − 1)|)

(54)

hence,

LHS of Eq. (54) ≤ Pr

( ∑
j∈CY 0

k ∩C
X
k

Pj · (2 ·Θj − 1)

> −
∑

j∈CY 0

k \C
X
k

Pj

)
(a)
= o(m−1)

(55)

For showing (a), since
∑

j∈CY 0

k ∩C
X
k

Pj · (2 ·Θj − 1) > −
∑

j∈CY 0

k \C
X
k

Pj


⊂


∑

j∈CY 0

k \C
X
k

Pj ≥
C · n · p
log(1/η)


∪


∑

j∈CY 0

k ∩C
X
k

Pj · (2 ·Θj − 1) ≥ − C · n · p
log(1/η)



(56)

it is enough to show following two claims, for some C > 0.

Claim 2. Following holds:

Pr

 ∑
j∈CY 0

k \C
X
k

Pj ≥
C · n · p
log(1/η)

 = o(m−1) (57)

Claim 3. Following holds:

Pr

 ∑
j∈CY 0

k ∩C
X
k

Pj · (2 ·Θj − 1) ≥ − C · n · p
log(1/η)

 = o(m−1)

(58)

We will use Lemma 5 for showing Claim 2. In the proof of
Claim 3, we may use Lemma 2, and note that θ = Ω(1), thus
θ ∈ [ν, 0.5] for some ν > 0.
Exact recovery of community (step 3).

We may assume both Step 1 and Step 2 were successful,
which implies uY

0

= uX . Define

Zδ := {CY :
⊔
k∈[K]

CYk = [n],
∑
k∈[K]

|CYk ∆CXk | < δ · n}

(59)

where A∆B := (A\B)t (B \A), then we will show that for
some small δ > 0 and ε > 0, if CY

t ∈ Zδ , then CY
t+1 ∈ Zδ/2

with probability 1− O(n−ε) = 1 − o( 1
log(n) ). Using this, we

can show CY
T

= CX a.s. by taking T = log(η·n)
log(2) , and η small

enough.
Suppose that CY

t ∈ Zδ , then we need to show, for some
ε > 0,

∃k 6= CX(i) : L̂(i, CY
t

CX(i), u
X
CX(i))− L̂(i, CY

t

k , uXk ) > 0

(60)

at most δ·n
2 nodes with probability 1 − O(n−ε). We will

consider (LHS) of Eq. (60) as following:

L̂(i, CY
t

CX(i), u
X
CX(i))− L̂(i, CY

t

k , uXk )

≤L(i, CY
t

CX(i), u
X
CX(i))− L(i, CY

t

k , uXk )

+ |L̂(i, CY
t

CX(i), u
X
CX(i))− L(i, CY

t

CX(i), u
X
CX(i))|

+ |L̂(i, CY
t

k , uXk )− L(i, CY
t

k , uXk )|

(61)

where L := LΓ

Proof will be achieved by following 2 statements, for some
τ > 0.

Claim 4. With probability 1 − o
(

1
log(n)

)
, there are at most

δ·n
2·K nodes, which satisfy:

∃k 6= CX(i) :

L(i, CY
t

CX(i), u
X
CX(i))− L(i, CY

t

k , uXk ) > −τ · log(n)

2

(62)

Claim 5. If we take η small enough in Step 1, following holds:

Pr(∀i, C, u, |L̂(i, C, u)−L(i, C, u)| < τ · log(n)

8
) = 1− o(1)

(63)

We may use Lemma 2, and Lemma 5 for showing Claim 4.
Considering Claim 5 following lemma will be applied:

Lemma 6. For any α, β, θ satisfying Eq. (3), and taking η
small enough, following holds:∣∣∣∣α− α̂α

∣∣∣∣ ,
∣∣∣∣∣β − β̂β

∣∣∣∣∣ ,
∣∣∣∣∣θ − θ̂θ

∣∣∣∣∣ = O(η) (64)
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Suppose that Claim 5 succeeds, and Claim 4 succeeds in
every k ∈ [K], and every T = log(η·n)

log(2) iterations. By Eq. (60),
except at most δ·n

2 nodes, ∀k 6= CX(i) ∈ [K],

L̂(i, CY
t

CX(i), u
X
CX(i))− L̂(i, CY

t

k , uXk )

≤− τ · log(n)

2
+
τ · log(n)

8
+
τ · log(n)

8

=− τ · log(n)

4
< 0

(65)

which means the node will be assigned correctly in the itera-
tion of step 3. Then finally,

∑
k∈[K] |CY

T

k ∆CXk | = b
η·n
2T
c = 0,

thus community may exactly recovers. In other words step 3
succeeds.

Now, we can estimate the probability of failure as following:

Pr(step 3 fails) ≤Pr(Claim 5 fails)

+
∑
t∈[T ]

Pr(Claim 4 fails)

=o(1) + o

(
1

log(n)

)
· T

=o(1) (∵ T = O(log(n)))

(66)

By Eq. (66), step 3 succeeds a.s. given step 1, 2 succeeds.
To sum up, By step 1, 2, 3, Algorithm 1 exactly recovers X
a.s.

D. Applications

Recommendation system: We can consider each node as
internet service user, and each binary feature as the user’s
preference to an item. Internet company may have both the in-
formation about social network [19], [20], and the information
about item preference, through tracking their user activity. On
the other hand, user clustering is one of the biggest challenge
in the recommendation system [21]. Service provider may
split users into several groups, and recommend items for each
group. One may think almost exact recovery is enough for that.
However, occasionally, “mis”classifying users can be critical
even if it is very small number of users (e.g. giving bad
experiences to the users may affect the reputation of the service
entirely).

Signal processing: The major challenge of signal pro-
cessing is to recover original signal from the observed noisy,
and sparsely compressed data [22]. We can consider the
community as the original data, from which noisy data come.
Suppose that we have relations between those signals, then we
can exactly recover their original data, applying this model.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results that corrob-
orate our theoretical findings. Specifically, we run Algorithm 1
on synthetic data, which is generated as follows.

1) Pick n,m,K, θ
2) Set α, β ∝ log(n)

n , and p ∝
(

log(n)
m + log(m)

n

)
3) Partition n nodes into K communities of sizes c0 · n ≤

c1 · n ≤ · · · ≤ cK−1 · n
4) Randomly draw a graph as per the symmetric SBM(α, β)

5) Randomly draw community features with the minimum
distance d ·m

6) Randomly draw n node features with p, θ
Here, we will simulate only the second and third stages

of the proposed algorithm, assuming that the first stage is
successfully done by any off-the-shelf community recovery
algorithms [12]. We simulate this by feeding a (1−η)-correct
partition to the input of the second stage of the algorithm.

Shown in Fig. 2 are the simulation results. Shown on the left
side is the empirical success rate of exact recovery for various
values for the minimum community size and the minimum
distance between community features, and shown on the right
side is the evaluated values of ΛΓ. For the empirical success
rates, we run our algorithm 5 times with randomly generated
observations. Corroborating our main theorems, one can see
that sharp phase transition happens around the border ΛΓ = 1.

In Fig. 3, we provide another set of simulation results, where
all the other settings remain the same except that p is doubled
from the previous setting. This corresponds to the improved
observation condition, which is illustrated in Fig. 1. As one can
see from the righthand figure, the value of ΛΓ strictly increases
for all pairs of the minimum community size and the minimum
feature distance, and hence the phase transition boundary shifts
left downward. From the lefthand figure, we can observe that
the empirical success rates also increase, exhibiting phase
transition around the new (improved) boundary.

VI. CONCLUSION

In this paper, we studied the joint recovery of K communi-
ties and their binary feature vectors. The information-theoretic
limit is precisely characterized. Further, we developed a
computationally efficient recovery algorithm that achieves the
limit. In order to generalize the existing result to the case
of K communities of different sizes, we defined a topology
of target space and provided a sharp analysis using it. We
conclude the paper with a list of a few open problems: First,
symmetric SBM seems unrealistic, and hence one may want to
extend our results to asymmetric cases; Second, binary feature
vectors are limited, and a more general feature space needs to
be considered.
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and P. Zhang, “Spectral redemption in clustering sparse networks,”
Proceedings of the National Academy of Sciences, vol. 110, no. 52,
pp. 20 935–20 940, 2013.

[17] A. Javanmard, A. Montanari, and F. Ricci-Tersenghi, “Phase transitions
in semidefinite relaxations,” Proceedings of the National Academy of
Sciences, vol. 113, no. 16, pp. E2218–E2223, 2016.

[18] E. Mossel and J. Xu, “Density evolution in the degree-correlated
stochastic block model.” in COLT, 2016, pp. 1319–1356.

[19] A. L. Traud, P. J. Mucha, and M. A. Porter, “Social structure of facebook
networks,” CoRR, vol. abs/1102.2166, 2011.

[20] L. A. Adamic and N. Glance, “The political blogosphere and the 2004
us election: divided they blog,” in Proceedings of the 3rd international
workshop on Link discovery. ACM, 2005, pp. 36–43.

[21] C. Bouras and V. Tsogkas, “Improving news articles recommendations
via user clustering,” Int. J. Machine Learning & Cybernetics, vol. 8,
no. 1, pp. 223–237, 2017.

[22] V. Tuzlukov, Signal processing noise. CRC Press, 2002, vol. 8.

694


