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Abstract—We study a matrix completion problem that lever-
ages a hierarchical structure of social similarity graphs as side
information in the context of recommender systems. We assume
that users are categorized into clusters, each of which comprises
sub-clusters (or what we call “groups”). We consider a low-rank
matrix model for the rating matrix, and a hierarchical stochastic
block model that well respects practically-relevant social graphs.
Under this setting, we characterize the information-theoretic
limit on the number of observed matrix entries (i.e., optimal
sample complexity) as a function of the quality of graph side
information (to be detailed) by proving sharp upper and lower
bounds on the sample complexity. Furthermore, we develop a
matrix completion algorithm and empirically demonstrate via
extensive experiments that the proposed algorithm achieves the
optimal sample complexity.

I. INTRODUCTION

Personalized recommender systems have emerged in a wide

range of Web applications to predict the preferences of its

users and provide them with new and relevant items based

on scarce data about the users and/or items [1]. Inspired by

the Netflix challenge, a well-known technique for predicting

the missing ratings in collaborative filtering frameworks is

low-rank matrix completion. Given partial observation of a

matrix of users by items, the goal is to develop an algorithm

to accurately predict the values of the missing ratings. One

of the prime challenges of collaborative filtering systems that

rely on user-item interactions is the “cold start problem” in

which high-quality recommendations are not feasible for new

users/items that bear little or no information. A prominent

technique to overcome this problem is to incorporate the

community information into the framework of recommender

systems in order to enhance the recommendation quality.

Numerous research works have explored the idea of lever-

aging the information inferred from social graphs to enhance

the performance of recommender systems from an algorithmic

perspective [1]–[20]. Recently, [21]–[24] have investigated the

problem of interest from an information-theoretic perspective.

However, they impose a number of strict assumptions on the

system model such as the users of the same cluster have same

ratings over all items, and hence each cluster is represented

by a rank-one matrix. This limits the practicality of the pro-

posed models for real-world data. In this work, we relax this
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assumption and study a more generalized framework in which

each cluster is represented by a rank-r matrix. In particular,

we consider a matrix completion problem where the users are

categorized into c clusters, each of which comprises g sub-

clusters, or what we call “groups”, producing a hierarchical

structure in which the features of different groups within a

cluster are broadly similar to each other; however, they are

different from the features of the groups in other clusters.

The main contributions of this paper are summarized as

follows. We characterize an information-theoretic threshold

for reliable matrix recovery as a function of the quantified

quality of the considered hierarchical graph side information

by establishing matching upper and lower bounds on the

sample complexity. To the best of our knowledge, this is

the first work to provide this characterization for any finite

field size, and any number of clusters and groups. We show

that the proposed algorithm, which leverages the hierarchical

graph structure, yields a substantial gain in sample complex-

ity, compared to a simple variant of [21], [22] that does

not leverage the relational structure across rating vectors of

groups. We also reveal that when the graph information is

rich enough to perfectly retrieve the structures of clusters and

groups, the optimal sample complexity increases linearly as the

number of clusters increases. Otherwise, the optimal sample

complexity remains almost constant, even though the number

of groups in a cluster increases. Furthermore, we develop a

matrix completion algorithm that starts with hierarchical graph

clustering, which produces an exact recovery of clusters, but an

almost exact recovery of groups. Then, the rating vectors are

estimated followed by iterative local refinement of groups. We

conduct extensive experiments to demonstrate that the optimal

sample complexity is achieved by the proposed algorithm.

II. PROBLEM FORMULATION

Consider a rating matrix X ∈ F
n×m
q , where n denotes the

number of users and m denotes the number of items. The

ratings of the rth user over m items forms the rth row of

X for r ∈ [n]. However, the rating matrix is incomplete,

in the sense that some entries might be missing. The user

similarity graphs (e.g., social graphs) are leveraged as side-

information to enhance the quality of the matrix completion.

More specifically, we consider a hierarchical similarity graph

over the users that consists of c disjoint clusters, and each

cluster comprises g disjoint groups. For the sake of tractable
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mathematical analysis, we assume equal-sized clusters and

groups. The theoretical guarantees, however, hold as long

as the group sizes are order-wise same (See Section III).

According to the social homophily theory [25], users within

the same community (that is, those who are more likely to be

connected in the social graph) are more likely to share similar

preferences over items. This results in a low rank structure of

the rating matrix since the rows of the rating matrix associated

with such users are likely to be similar [26]. To capture this

crucial fact in our model, we make the following assumptions:

(i) the rating vectors of the users who belong to the same

group are equal, and hence there are gc distinct rating vectors

in total; (ii) the rating vectors of the groups of a given cluster

are different, yet intimately-related to each other through a

linear subspace of r basis vectors for some integer r ≤ g [27],

[28]. Let v
(x)
i denotes the rating vector of the users in cluster

x and group i for x ∈ [c] and i ∈ [g]. Let R(x) ∈ F
g×m
q denote

a matrix whose rows are the rating vectors of the groups in

cluster x for x ∈ [c]. The set of g rows of R(x) (that is, the set

of g rating vectors of the groups in cluster x) is spanned by

any subset of r rows of R(x). Let X0 denote the ground truth

rating matrix. Each instance of the problem corresponds to a

rating matrix X0, which can be represented by a set of rating

vectors V0 = {u(x)i : x ∈ [c], i ∈ [g]} and a user partitioning

Z0. Formally, Z0 is a family of subsets of [n] that partitions

the set of all users [n] into c clusters and g groups (per cluster).

The main goal is to find the best estimate of X0 with the

knowledge of two types of observations. The first type is a

partial and noisy observation Y of X0. For every r ∈ [n] and

t ∈ [m], let Y (r, t) ∈ Fq ∪ {∗}, where ∗ denotes no obser-

vation. Let the set of observed entries of X0 be denoted by

Ω = {(r, t) ∈ [n]× [m] : Y (r, t) ̸= ∗}. The partial observation

is modeled by assuming that each entry of X0 is observed with

probability p ∈ [0, 1], independently from others. Moreover,

the potential noise in the observation is modeled by a random

uniform noise distribution; that is, the noise is not adversarial

(i.e., not deterministic). We assume that each observed entry

X0(r, t), for (r, t) ∈ Ω, can possibly be flipped to any element

of the set {0, 1, . . . , q−1}\X0(r, t) with a uniform probability

of θ/(q − 1) for θ ∈ [0, (q − 1)/q). The second type of

observation is user similarity graph G = ([n], E). A vertex

represents a user, and an edge captures a social connection

between two users. The set [n] of vertices is partitioned into

c disjoint clusters, each of which has n/c users. Each cluster

is further partitioned into g disjoint groups, each of which has

n/(cg) users. The user similarity graph is generated according

to the hierarchical stochastic block model (HSBM) [29], [30],

which is a generative model for random graphs exhibiting

hierarchical cluster behavior. In this model, each two nodes

in the graph are connected by an edge, independent of all

other nodes, such that there is an edge between two users in

the same group within a cluster with probability α̃; there is an

edge between two users in different groups but within the same

cluster with probability β̃; and there is an edge between two

users in different clusters with probability γ̃. We assume the

edge probabilities scale with the problem size, i.e., α̃ = α logn
n

,

β̃ = β logn
n

and γ̃ = γ logn
n

, where α, β and γ are positive

real numbers such that α ≥ β ≥ γ. Note that the considered

edge probabilities guarantee the disappearance of isolated

vertices (i.e., vertices of degree zero) in the user similarity

graph, which is a necessary property for exact recovery in the

stochastic block model (SBM) [31]. Furthermore, motivated

by the social homophily theory [25], we assume α ≥ β ≥ γ
where users within the same group (or cluster) are more likely

to be connected than those in different groups (or clusters).

Let ψ denote an estimator (decoder) that takes as input a

pair (Y,G), and outputs a completed rating matrix X ∈ F
n×m
q .

Note that both the set of rating vectors V and the user

partitioning Z can be recovered from the completed rating

matrix X and vice versa. With a slight abuse of notation, we

denote the output of the estimator as X or (V,Z).
A key parameter of the main result (see Section III) is the

discrepancy between the rating vectors. Let δg be the minimum

normalized Hamming distance among the distinct pairs of

rating vectors of groups within the same cluster. Let δc be

the counterpart with respect to different pairs of rating vectors

across different clusters. Formally, δg and δc are given by

δg=
1

m
min
x∈[c]

min
i,j∈[g]
i̸=j

dH

(
u
(x)
i , u

(x)
j

)
, δc=

1

m
min
i,j∈[g]

x,y∈[c],x ̸=y

dH

(
u
(x)
i , u

(y)
j

)
.

Our main result hinges on δ := (δg, δc). We provide theoretical

guarantees for the recovery of all rating matrices M in which

the rating vectors maintain a minimum level of dissimilarity.

Formally, define M(δ) as the set of matrices M = (V,Z)
such that the following properties are satisfied: (i) the set of

rating vectors V must satisfy the property that the minimum

normalized Hamming distance among rating vectors in dif-

ferent groups within the same cluster and those in different

clusters are not smaller than δg and δc, respectively; and (ii)

the user partitioning Z must satisfy the property that the sizes

of clusters and groups are c/n and c/(ng) users, respectively.

The performance metric we consider to provide theoretical

guarantees on the recommendation quality is the worst-case

probability of error Pe. In other words, the quality of the esti-

mator is defined by its accuracy of estimating the most difficult

ground truth matrix M = (V,Z) ∈ M(δ). Therefore, we apply

a minimax optimization approach wherein the objective is to

find the estimator that minimizes the maximum risk, i.e.,

inf
ψ
P (δ)
e (ψ) = inf

ψ
max

M∈M(δ)
P [ψ(Y,G) ̸=M ] . (1)

Our goal is to characterize the optimal sample complexity (i.e.,

the minimum number of entries of the rating matrix that is

required to be observed), concentrated around nmp⋆ in the

limit of n and m, for exact rating matrix recovery. Here, p⋆

denotes a sharp threshold on the observation probability such

that the following conditions, in the limit of n and m, are

satisfied: (i) when p > p⋆, there exists an estimator such that

the error probability can be made arbitrarily close to 0; and

(ii) when p < p⋆, the error probability does not converge to

zero no matter what and whatsoever.
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III. MAIN RESULTS

Similar to [21], [32], we assume that m = ω(log n) and

logm = o(n) in order to apply large deviation theories.

These assumptions are practically relevant, as they eliminate

the possibility of having extremely tall or wide matrices.

Theorem 1 (Optimal Sample Complexity). Let m = ω(log n)
and logm = o(n). Let q, θ, c, g and r be constants such

that q is prime, θ ∈ [0, (q − 1)/q), and r ≤ g. Let

Υ(q, θ) := 1/(
√
1−θ −

√
θ/(q−1))2. For any constant

ϵ > 0, if (2) holds, then there exists an estimator ψ that

outputs a rating matrix X ∈ M(δ) given Y and G such

that limn→∞ P
(δ)
e (ψ) = 0; conversely, if (3) holds, then

limn→∞ P
(δ)
e (ψ) ̸= 0 for any estimator ψ. Therefore, the

optimal observation probability p⋆ is given by (4).

Proof: We provide a proof sketch of Theorem 1. We defer

the complete achievability and converse proofs to [33]. The

achievability proof is based on maximum likelihood estimation

(MLE). We first evaluate the likelihood for a given cluster-

ing/grouping of users and the corresponding rating matrix.

Next, we provide an upper bound on the worst-case probability

of error, which is given by the probability that the likelihood

of the ground truth rating matrix is less than that of a candidate

rating matrix. Then, we partition the candidate rating matrices

into two sets, typical and atypical sets. A typical (or atypical)

set denotes the set of rating matrices that have a relatively

small (or large) number of error entries compared to the

ground truth matrix. Finally, we conduct typical and atypical

error analyses as follows. In the typical error analysis, we

provide a tight upper bound on the cardinality of the typical

set and a loose upper bound on the error probability of a

candidate matrix. On the other hand, in the atypical error

analysis, we provide a loose upper bound on the cardinality of

the typical set and a tight upper bound on the error probability

of a candidate matrix. These analyses are based on the fact that

the size of the set of candidate matrices with a small number of

error entries is relatively larger than that of the one with a large

number of error entries. Based on these bounds, we show that

the probability of error for any candidate matrix in the typical

set is negligibly smaller than the carnality of the typical set of

matrices, and hence this leads to convergence of the overall

worst-case probability of error to zero as n and m goes to

infinity. Hence, the worst-case probability of error vanishes in

the limit of n and m. This completes the achievability proof.

The converse proof starts with establishing a lower bound

on the error probability and showing that it is minimized

when employing the maximum likelihood estimator. Next,

we prove that if p is smaller than any of the three terms

in the RHS of (4), then there exists another solution that

yields a larger likelihood, compared to the ground-truth ma-

trix. More precisely, for any estimator and any ground truth

rating matrix, we present the following three cases. First,

if p ≤ Υ(q, θ) (1−ϵ)gc logm(g−r+1)n , there exists a class of matrices

obtained by replacing one column of the ground truth rating

matrix with a carefully chosen sequence, and it yields a higher

likelihood than that of the ground truth rating matrix. Second,

if p ≤ Υ(q, θ) logn
δgm

((1−ϵ)− (
√
α−√

γ)2

gc
), there exists a class

of rating matrices obtained by swapping the rating vectors of

two users in the same cluster yet from distinct groups with the

Hamming distance between their rating vectors being mδg . We

show that the likelihood of any rating matrix from this class is

greater than the one of the ground truth rating matrix. Third,

if p≤Υ(q, θ) logn
δcm

((1−ϵ)− (
√
α−√

γ)2+(g−1)(
√
β−√

γ)2

gc
), we can

find a class of rating matrices obtained by swapping the rating

vectors of two users in distinct clusters with an mδc Hamming

distance between their rating vectors. We show that any rating

matrix from this class yields a larger likelihood than that of

the ground truth rating matrix. For each case, we show that the

maximum likelihood estimator will fail in the limit of n and

m by selecting one of the rating matrices from the respective

class instead of the ground truth rating matrix. This completes

the converse proof and concludes the proof of Theorem 1.

Remark 1. The technical distinctions from the previous

works [21], [22], [32] are four-fold. First, the likelihood

computation requires more involved combinatorial arguments

due to the hierarchical structure of the similarity graph (See

Lemma 1 in [33]). Second, sophisticated upper and lower

bounding techniques are developed to leverage the relational

structure across different groups (See Lemmas 3 and 4 in

[33]). Third, novel typical and atypical error analyses are

proposed for the achievability proof (See Lemmas 5 and 6

in [33]). Fourth, novel failure proof techniques are developed

for the converse proof (See Section V in [33]). Furthermore,

setting (c, g, r, q)=(2, 3, 2, 2), the optimal probability p⋆ in (4)

reduces to the one characterized by [32]. Hence, the result of

[32] is subsumed by the general result given by Theorem 1.

Note that the optimal sample complexity for general (c, g, r, q)
is conjectured by [32]. However, the proofs are provided

only for (c, g, r, q)=(2, 3, 2, 2). This work presents complete

achievability and converse proofs for any (c, g, r, q).

p ≥ Υ(q, θ) max

{
gc(1+ϵ)

g−r+1

logm

n
,
log n

δgm

(
(1+ϵ)−

(√
α−

√
β
)2

gc

)
,
log n

δcm

(
(1+ϵ)−

(√
α−√

γ
)2
+(g−1)

(√
β−√

γ
)2

gc

)}
. (2)

p ≤ Υ(q, θ) max

{
gc(1−ϵ)
g−r+1

logm

n
,
log n

δgm

(
(1−ϵ)−

(√
α−

√
β
)2

gc

)
,
log n

δcm

(
(1−ϵ)−

(√
α−√

γ
)2
+(g−1)

(√
β−√

γ
)2

gc

)}
. (3)

p⋆ = Υ(q, θ) max

{
gc

g−r+1

logm

n
,
log n

δgm

(
1−
(√
α−

√
β
)2

gc

)
,
log n

δcm

(
1−

(√
α−√

γ
)2
+(g−1)

(√
β−√

γ
)2

gc

)}
. (4)
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IV. DISCUSSION

A. Noise Model and Finite Field Size

The reason for choosing the uniform noise model is that

the uniform noise distribution is the worst case distribution in

discrete channels. Next, it is evident that the optimal sample

complexity in (4) increases as θ increases. Furthermore, as θ
approaches (q−1)/q, each sampled entry of the rating matrix

can take any of the q possible values with a uniform probability

of 1/q, and hence an infinite sample complexity is theoretically

required to exactly recover the entries of the rating matrix.

B. Quality of Hierarchical Similarity Graph

We illustrate the relationship between the optimal sample

complexity and the quality of the hierarchical graph by defin-

ing the following quality parameters: Iα,β :=
(√
α−

√
β
)2

,

Iα,γ :=
(√
α−√

γ
)2

, and Iβ,γ :=
(√
β−√

γ
)2

. Intuitively,

as Iα,β increases, it becomes easier to distinguish users

in different groups within the same cluster. On the other

hand, higher values of Iα,γ and Iβ,γ lead to better user

clustering. The optimal sample complexity reads different

values depending on the quality parameters of the hierarchical

graph. Next, we define three regimes as follows. The first

term in the RHS of (4) is activated when Iα,β , Iα,γ and

Iβ,γ are large enough so that the grouping and clustering

information is reliable. Therefore, this regime is coined as

“perfect clustering/grouping regime”. The second term in the

RHS of (4) is activated when Iα,β is small such the grouping

information is not reliable, Therefore, this regime is coined as

“grouping-limited regime”. The third term in the RHS of (4) is

activated when Iα,γ and Iβ,γ are small such that the clustering

information is not reliable, and δg > δc. Thus, this regime is

coined as “clustering-limited regime”. Next, we analyze the

optimal sample complexity under each regime. For illustrative

purposes, we assume that θ = 0. This implies Υ(q, θ) = 1.

1) Perfect Clustering/Grouping Regime: The optimal sam-

ple complexity reads (gc/(g−r+1))m logm. Since the group-

ing and clustering information are reliable, one can recover the

groups and clusters from the similarity graph. However, further

increments of the values of these quality parameters do not

yield further improvement in the sample complexity, and hence

the sample complexity gain from the similarity graph is satu-

rated in this regime. Moreover, it should be noted that a naive

generalization of [21], [22] requires crm logm observations

since there are r independent rating vectors to be estimated

for each the c clusters, and each rating vector requires m logm
observations under the considered random sampling due to the

coupon-collecting effect. On the other hand, we leverage the

relational structure (i.e, linear dependency) across the rating

vectors of different groups, reflected by the underlying linear

MDS code structure (See Section IV in [33]), and hence

this serves to estimate the rc rating vectors more efficiently,

precisely by a factor of r(g − r + 1)/g improvement, thus

yielding (gc/(g − r + 1))m logm.

2) Grouping-Limited Regime: The optimal sample com-

plexity reads 1
δg

(
1− Iα,β

gc

)
n log n, which is a decreasing

function of Iα,β . This sample complexity coincides with that

of [22] in which the considered similarity graph consists of

only gc clusters. This implies that leveraging the relational

structure across different groups does not help improve the

sample complexity when the grouping information is not

reliable. Moreover, since the clustering information is reliable,

the clusters can be recovered from the similarity graph. How-

ever, further increases in Iα,γ and Iβ,γ do not reduce sample

complexity, so the sample complexity gain from these two

parameters is saturated in this regime.

3) Clustering-Limited Regime: The optimal sample com-

plexity reads 1
δc

(
1− Iα,γ+(g−1)Iβ,γ

gc

)
n log n, which is a de-

creasing function of Iα,γ and Iβ,γ . This is the most challenging

scenario, which has not been explored by any prior works.

Since the clustering information is not reliable, it is not

possible to recover the groups and clusters from the similarity

graph. Furthermore, note that when β = γ, i.e., groups

and clusters are indistinguishable, we have Iα,β = Iα,γ and

Iβ,γ = 0. As a result, it boils down to a problem setting

of gc clusters, and hence the optimal sample complexity

reads 1
δc

(
1− Iα,β

gc

)
n log n. Comparing to the optimal sample

complexity expression for the grouping-limited regime, the

only distinction appears in the denominator, in which δg is

replaced with δc due to the fact that δc < δg .

C. Illustrative Comparisons

Fig. 1a and Fig. 1b depict the different regimes of the

optimal sample complexity as a function of (Iα,β , Iβ,γ). In

Fig. 1a, where δg > δc, the region depicted by diagonal stripes

corresponds to the perfect clustering/grouping regime and the

first term in the RHS of (4) is active. The graph quality param-

eters Iα,β , Iβ,γ , and consequently Iα,γ are large, and the graph

information is rich enough to perfectly retrieve the clusters

and groups. The region represented by dots corresponds to the

grouping-limited regime, where the second term in the RHS

of (4) is active. In this regime, graph information suffices to

exactly recover the clusters, but we need to rely on rating

observation to exactly recover the groups. Finally, the third

term in the RHS of (4) is active in the region captured by

horizontal stripes. This indicates the clustering-limited regime,

where neither clustering nor grouping is exact without the side

information of the rating vectors. On the other hand, Fig. 1b,

where δg < δc, depicts the practically-relevant setting in which

the rating vectors of users in the same cluster are expected to

be more similar than those in different clusters. Note that the

third regime (clustering-limited regime) vanishes in Fig. 1b.

Fig. 1c compares the optimal sample complexity, as a

function of Iα,β , between the one reported by Theorem 1 and

that of [22]. Note that [22] leverages neither the hierarchical

structure of the graph nor the linear dependency among the

rating vectors. Thus, the problem formulated in Section II

will be translated to a graph that consists of gc clusters

whose rating vectors are linearly independent in the setting
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2412Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 24,2022 at 22:36:43 UTC from IEEE Xplore.  Restrictions apply. 



선 (
足

|
홍 \ 

II 

�

Ia,/3 = (fo — �) 2

(a) δg = 1/3 and δc = 1/6.

Ia,/3 = (fo — �) 2

선 (
足

|
홍 \ 

II 

�

(b) δg = 1/6 and δc = 1/3. (c) δg = 1/3 and δc = 1/6. (d) δg = δc = 1/3.

Figure 1. Let (n,m, θ, c, g, r, q) = (4000, 500, 0, 10, 5, 3, 5) for subfigures (a)-(c). (a), (b): The different regimes of the optimal sample complexity reported
in Theorem 1 for δg > δc and δg < δc, respectively. Diagonal stripes, dots, and horizontal stripes refer to perfect clustering/grouping regime, grouping-limited
regime, and clustering-limited regime, respectively. (c) Comparison between the sample complexity reported in Theorem 1 and that of [22] for β = 5 and γ = 1.
(d) Sample complexity as a function of the number of clusters in the perfect clustering/grouping regime where (n,m, θ, g, r, q) = (1680, 840, 4, 0, 3, 5) and
(α, β, γ) = (49, 9, 0.5).
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(b) Grouping-Limited Regime (c) Proposed Algorithm (d) Algorithm of [22]

Figure 2. (a), (b): The success rate of the proposed algorithm as a function of p/p⋆ for different values of n, m and α. The problem setting is (c, g, q, r) =

(3, 4, 5, 3), θ = 0.01, (β, γ) = (9, 0.5), and (δg , δc) = (1/3, 1/3). The MDS code structure is u
(x)
4 = u

(x)
1 + u

(x)
2 + u

(x)
3 for x ∈ [3]. (c), (d): The

success rates of two matrix completion algorithms where (n,m, θ, γ, c, g, r, q) = (2400, 600, 0, 0.5, 3, 4, 3, 5), and (δg , δc) = (1/2, 1/2).

of [22]. Furthermore, the minimum Hamming distance for

[22] is δc. The significant gain in the sample complexity of

our result is evident in the diagonal parts of the plot (i.e.,

clustering-limited and grouping-limited regimes on the left

side) is due to leveraging the hierarchical graph structure,

while the improvement in the sample complexity in the flat

part of the plot (i.e, perfect clustering/grouping regime) is a

consequence of leveraging the relational structure (i.e., linear

dependency) among the rating vectors within each cluster.

Fig. 1d depicts the sample complexity as a function of the

number of clusters in the perfect clustering/grouping regime.

It shows both the theoretical values (given by (4)) and the em-

pirical values (given by the algorithm explained in Section V).

It is evident that the sample complexity increases linearly

with the number of clusters when there is enough graph side

information to retrieve the cluster and group structures.

V. SIMULATION RESULTS

We conduct Monte Carlo experiments to show that the

proposed algorithm achieves p∗ characterized by Theorem 1.

Empirical success rates are averaged on 100 random realiza-

tions of rating vectors and hierarchical graphs. The settings of

the experiments are stated in the captions of the figures. The

proposed algorithm is built in part upon the computationally

efficient matrix completion algorithm proposed in [32]. It

consists of four phases. The first one exactly recovers the

clusters using the community detection algorithm in [34]. The

second phase gives an initial estimate of the groups (i.e, almost

exact recovery) using any spectral clustering algorithm, e.g.

[31], [35]–[39]. Next, the third phase exactly recovers the

rating vectors associated with each group in each cluster using

maximum likelihood estimation. Finally, the last phase exactly

recovers the group via an iterative local refinement procedure.

The distinction of our algorithm compared to [32] is that

the stage of exact recovery of the rating vectors is based on

maximum likelihood estimation.

In Figs. 2a and 2b, we quantify the empirical success rate

of the proposed algorithm as a function of the normalized

sample complexity. We vary n and m such that n/m= 4.

Fig. 2a shows the case of α=49 which corresponds to perfect

clustering/grouping regime, while Fig. 2b depicts the case of

α=27 which corresponds to the grouping-limited regime. In

both figures, we observe a phase transition in the success rate

at p= p⋆, and the phase transition gets sharper as n and m
increase. This implies that the proposed algorithm achieves p∗,

given by Theorem 1, in different regimes when the graph side

information is not scarce.

Finally, we highlight the sample complexity gain from lever-

aging the relational structure among rating vectors. Figs. 2c

and 2d depict the success rates under various values of p and

Iα,β for the proposed algorithm and the one in [22] (where the

relational structure among rating vectors is not considered),

respectively. The empirical success rate is represented by a

grayscale heat map. The orange line indicates the optimal sam-

ple complexity given by Theorem 1. The vertical and diagonal

lines correspond to the sample complexity in perfect clus-

tering/grouping and grouping-limited regimes, respectively. In

Fig. 2c, the phase transition in the success rate of the proposed

algorithm is sharp and occurs at the optimal probability given

by (4). However, the phase transition in Fig. 2d occurs at a

higher observation probability, and therefore [22] requires a

higher sample complexity than the proposed algorithm.
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