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Abstract—We consider a matrix completion problem that
exploits social graph as side information. We develop a compu-
tationally efficient algorithm that achieves the optimal sample
complexity for the entire regime of graph information under
the multiple cluster setting (to be detailed). The key idea is to
incorporate a switching mechanism which selects the information
employed in the first clustering step, between the following two
types: graph & matrix ratings. Our experimental results on both
synthetic and real data corroborate our theoretical result as well
as demonstrate that our algorithm outperforms prior algorithms
that leverage graph side information.

A full version of this paper is accessible at: https://sites.
google.com/view/gwsuh/home/full-version_isit2022

I. INTRODUCTION

Recommender systems (RSs) aim to recommend items that
users may prefer or be interested in. A well-known technique
for operating RSs is low-rank matrix completion, which have
been extensively investigated and shown to be widely appli-
cable [1–8]. One challenge that arises in practice is posed
as the so-called cold start problem: new users cannot get an
appropriate recommendation. A natural way to address the
challenge is to enhance RSs with the aid of side information.
Indeed, recent works were dedicated to improving the quality
of recommendation by employing a social network graph [9–
18].

There have been numerous studies providing information-
theoretical insights to enhance recommender systems by ex-
ploiting graph side information [18–23]. In particular, the prior
work [18] characterized the optimal sample complexity for
exact matrix recovery as a function of the quality of graph
information. Under the stochastic block model (SBM), the
quality is often quantified as Is := (

√
α −

√
β)2 where α

(or β) indicates the edge probability between two users in the
same (or different) clusters. This work has been extended to
a generalized scenario in the follow-up work [19], targeting a
multiple cluster setting.

The prior works proposed computationally efficient algo-
rithms but these are shown to achieve the optimal sample
complexity only for a limited scenario wherein the amount
of graph information is sufficiently large. Specifically, the
achievable regime w.r.t. Is reads Is = ω

(
1
n

)
where n denotes

the number of users in the given social graph. While an optimal
and efficient algorithm had been out of reach, the very recent
work [24] has provided such an algorithm in the simple two-
cluster setting.

Contributions: Our contribution is to develop and analyze
a computationally efficient algorithm that ensures optimality
for the entire range of Is in the generalized multiple cluster
setting.

The prior algorithms [18–23] follow a well-known two-step
procedure: (i) obtaining an initial estimate on user clustering
via a spectral method; and (ii) recovering matrix ratings
followed by iterative local refinement of clustering. Since the
first clustering step is solely based on graph side information,
the algorithms do not guarantee achievability for the scarce
graph information regime, e.g., Is = O

(
1
n

)
in [18, 19].

To overcome this challenge, Suh et al. [24] proposed a
switching-geared clustering strategy, which selects employed
information between graph and matrix ratings depending on
the quality of the two information. But the strategy and the
corresponding analysis are confined to the simple two-cluster
setting. Our main contribution is to generalize this mechanism
to accommodate multiple clusters with theoretical guarantee;
see Algorithm 1 for details on the switching strategy, as well as
see Remark 4 for distinctive technical aspects of the analysis.
We show that our algorithm achieves the optimal sample
complexity for the entire Is regime. The analysis is based
on perturbation techniques in random matrix theory [25, 26].

Next, we conduct experiments on synthetic datasets to cor-
roborate the theoretical guarantee of the proposed algorithm.
We further demonstrate the superior performance over the
other approach [18, 19], hinging solely upon graph information
in the first clustering stage. We also employ real graph datasets
[27, 28] to compare with other matrix completion approaches.
See Fig. 4 in Section V.

Related works: In addition to [18], graph-assisted matrix
completion has been explored in various multiple cluster
settings [19, 20, 22, 23]. Yoon et al. [19] characterized the
fundamental limit on sample probability required for matrix
completion in the multiple cluster setting. Elmahdy et al.
[20] considered a hierarchical cluster setting in which clusters
exhibit another sub-clustering structure. Zhang et al. [22, 23]
explored a richer setting which exploits as side information
both social and item similarity graphs. While all of the works
developed computationally efficient algorithms, the optimality
of the algorithms was shown only when the amount of side
information is sufficiently large, i.e., Is = ω

(
1
n

)
. On the other

hand, our algorithm ensures the optimality for the entire Is
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regime. As mentioned earlier, Suh et al. [24] developed an
efficient and optimal algorithm but the considered model is
restricted to the two-cluster setting.

The initial clustering step of our algorithm relies on a line
of research regarding graph-based clustering [25, 29–33] as
well as other clustering methods [34, 35]. In particular, our
mechanism encompasses matrix-rating-based clustering aided
by singular value decomposition (SVD) [34, 35]. Several
techniques [26, 36–39] employed for the analysis of SVD-
based approaches form the basis of our proof. But there are
some distinctive technical contributions; see Lemmas 2 and 3
for details.
Notations: For a graph G and two exclusive vertex sets V1, V2,
e(V1, V2) indicates the number of edges between V1 and V2.

II. PROBLEM FORMULATION

Setting: We consider a rating matrix with n users (rows)
and m items (columns). Each user rates items either as 1
or −1, denoting "like"/"dislike" respectively. We assign 0 for
unrated items. As in [19], we focus on a simple multiple-
cluster setting in which there are k equal-sized clusters of
users, say C1, . . . , Ck (for simplicity, n is assumed to be
divisible by k), and k = O(1). The users from the same
cluster share the same rating vector over the items. For all
i ∈ [k], let vi ∈ {−1, 1}1×m be the rating vector w.r.t.
cluster Ci. Assume that rating vectors {v1, . . . , vk} are linearly
independent. Let M ∈ {−1, 1}n×m be a rating matrix where
the ith row corresponds to the rating vector of user i.

We highlight one important measure that is instrumental
in describing the main result (to be stated shortly): δ =
1
m mini,j∈[k] dH(vi, vj), the normalized minimum Hamming
distance w.r.t. all pairs of rating vectors {v1, . . . , vk}. We
partition all the possible rating matrices into subsets depending
on δ. For fixed δ, M (δ) be the set of rating matrices subject
to δ, i.e., every pair of rating vectors has a distance less than
δm.

Problem of interest: Our goal is to recover a rating matrix M
given two types of information. The first is a partially observed
rating matrix Y ∈ {−1, 0, 1}n×m. We denote by Ω the set of
observed entries of Y : Ω = {(i, j) ∈ [n] × [m] : Yij ̸= 0}.
We assume that each entry is observed with probability p ∈
[0, 1] independently from others. Its observation can possibly
be flipped with probability θ ∈ [0, 12 ). In other words, the entry
of Y respects Yij ∼ Bern(p) · (1− 2Bern(θ))×Mij .

The second is an undirected social graph G = ([n], E),
where E denotes the set of edges, capturing the connection
between two users. The set [n] of nodes are partitioned into
k disjoint and equal-sized clusters. We assume that the graph
follows the SBM with two types of edge probabilities: α (or β)
for intra-cluster (or cross-cluster) users. We consider practical
scenarios where users from the same cluster are more likely
to be connected, i.e., α > β.

Performance metric: Let ψ be the estimator of a rating
matrix, taking (Y,G) as an input. As a performance metric,

we use the worst-case probability of error:

P (δ)
e (ψ) := max

M∈M(δ)
P[ψ(Y,G) ̸=M ].

Our goal is to develop a computationally efficient estimator
ψ that drives P (δ)

e → 0 as n → ∞ for any p larger than the
optimal sample probability p∗ for a constant δ.

III. MAIN RESULTS

We first state the optimal sample probability p∗ character-
ized in [19] under the considered model. To capture the quality
of social graph, we introduce Is := (

√
α−

√
β)2, a quantified

measure representing the clustering capability. The higher, the
easier to cluster and hence the more graph information. As in
[18], we take the same assumption on n and m that yields
the large deviation results in the proof: m = ω(log n) and
logm = o(n). This condition is also practically relevant, as it
rules out highly asymmetric matrices.

Theorem 1 (Optimal sample probability [19]): Let

p∗(Is) :=
1

(
√
1− θ −

√
θ)2

max

{
k log n− nIs

kδm
,
k logm

n

}
.

Fix ϵ > 0. If p > (1 + ϵ)p∗(Is), P
(δ)
e (ψ) → 0 as n → ∞

for some sequence of estimator ψ. Conversely, if p < (1 −
ϵ)p∗(Is), P

(δ)
e (ψ) ̸→ 0 as n→ ∞ for any ψ.

For notational simplicity, from below, we use p∗ instead of
p∗(Is). Yoon et al. [19] developed an efficient algorithm that
achieves p∗ yet only with enough graph information, formally
stated below.

Theorem 2 (Theoretical guarantees of a prior algorithm
[19]): Suppose that Is = ω

(
1
n

)
and p respects the sufficient

condition in Theorem 1. Then, the estimator ψ0 in [19] exactly
recovers the rating matrix M with high probability as n and m
tend to infinity: P(M̂ =M) = 1−o(1) where M̂ := ψ0(Y,G).

The optimal and computationally efficient algorithm guaran-
teed for the entire regime of Is has been unknown. To answer
this open question, we develop an efficient universal algorithm
that promises p∗ for the entire achievable regime.

Theorem 3 (Theoretical guarantees of our universal al-
gorithm): Suppose that p respects the sufficient condition
in Theorem 1. Then, our computationally-efficient algorithm
exactly recovers M with high probability, approaching 1 as n
and m tend to infinity.

Theorem 3 implies that there is no information-computation
gap for the entire achievable regime, including the case of Is =
O
(
1
n

)
. In fact, the prior algorithm [18, 19] solely depends on

the social graph information in the initial clustering step. This
motivated [24] to develop a different clustering strategy which
exploits both types of information.

Inspired by the proposed algorithm in [24], we incorporate
a switching-geared clustering strategy that properly selects
the employed information for clustering between graph and
matrix ratings. While the applicability of the prior result [24]
is limited to the two-cluster scenario, our algorithm ensures
universal optimality for general multiple cluster settings.
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(a) Graph clustering (b) Matrix clustering (c) Proposed

Fig. 1: Achievable regimes (shaded in blue color) due to: (a) graph-clustering approach (use only graph in the first clustering
step); (b) matrix-rating-clustering approach (use only matrix ratings); (c) our proposed approach (use graph or matrix ratings
depending on the amount of graph information). With proper switching of the employed information for clustering, our algorithm
achieves the entire achievable regime promised by MLE.

Remark 1 (Switching-geared strategy): Here we briefly
explain how the switching mechanism developed in [24]
works. Fig. 1 depicts achievable regimes (shaded in blue
color) in terms of (p, Is). The red shaded region indicates
the non-achievable regime, and the optimal sample probability
p∗ = p∗(Is) is indicated by the black bold line. Fig. 1(a) shows
the achievable regime for the algorithm in [19] where the first
clustering step employs only graph information. As implied
by Theorem 2, the achievability is proved when Is = ω

(
1
n

)
.

Fig. 1(b) refers to the case in which only matrix ratings are
employed in the first clustering step. Suh et al. [24] showed
the achievability when p is large: p = ω

(
1
m + 1√

nm

)
, on

the other hand, the achievability is not explored in the small
p regime. By switching these two clustering methods with a
proper threshold, say p̃, it is shown in [24] that the algorithm
can achieve the information-theoretical limit. See Fig. 1(c). ■

Remark 2 (Comparison to the prior work [24]): A limitation
of the prior algorithm [24] comes from a restricted two-cluster
scenario. Employing an additional deviation technique (see
Remark 3 for details), we extend to a generalized multiple
cluster setting. One interesting aspect of our algorithm is that
we can make a k-unaware choice for the threshold p̃ so that
it is independent of k. See Section IV-B for details. ■

IV. PROOF OF THEOREM 3
A. Algorithm Description

The overall structure of our algorithm follows the prominent
two-stage procedure [5, 29, 31, 40, 41]. As in [18, 19, 21, 23],
we further divide the second stage into two steps, so there are
three steps in total. Step 1 is the major one that invokes the
key idea inspired by [24]. In Step 1, we intend to estimate
all the clusters based on graph and matrix ratings. The 2nd
and 3rd steps admit the standard procedures employed in
[18, 19]. In Step 2, we recover the rating vectors via majority
voting, given clustering information estimated in Step 1. In
Step 3, we employ point-wise maximum likelihood estimation
(MLE) w.r.t. each user’s cluster to successively refine the
cluster information. The details are described below; also see
Algorithm 1.
Step 1 (Initial clustering via a switching mechanism):
Notice that the regime Is = O

(
1
n

)
is not achievable with

graph-based clustering, while being achievable with matrix-
rating-based clustering. For another regime Is = ω

(
1
n

)
,

the other way around holds. From this observation, one can
suggest a switching mechanism that makes a proper selection
among two clustering methods. This motivates Suh et al. [24]
to propose the following rule: For a small p (a large Is), we
apply graph-based-clustering approach as in [19], and for a
large p (a small Is), we perform matrix-rating-based clustering.
The authors showed that by choosing a threshold probability
like p̃ = ω

(
1
m + 1√

nm

)
, the proposed algorithm ensures the

optimality in the two-cluster setting.
Now a natural follow-up question arises: how to develop a

proper switching threshold for general k? It turns out that the
same threshold employed for the two-cluster setting (chosen
to be independent of k) can still be a good choice that enables
the achievability for an arbitrary value of k. We show that
p > p̃ is translated to the low Is = O

(
1
n

)
regime, implying

that the entire Is regime is covered by a switching strategy.
See Section IV-B for proof details.

Matrix-rating-based clustering: The switching rule requires
the knowledge of p which is unknown. So we employ an
estimate for p, e.g., the ML estimate p̂ = |Ω|

mn . If p̂ is above the
threshold p̃, we employ matrix-based clustering. Specifically
we first apply a singular value decomposition (SVD) w.r.t. the
observed matrix Y : Y = UΣV T . Then, from the k leading
columns of U , we generate an n-by-k matrix UY . Next, we
employ the k-means algorithm [42] w.r.t. UY to obtain an
initial estimatie of clusters, say {C(0)

l }l∈[k]. See lines 3–6 in
Algorithm 1. In Section IV, we will show that this clustering
method guarantees weak clustering, which plays a crucial role
in ensuring matrix completion together with Steps 2 and 3.

Graph-based clustering: If p̂ is below p̃, we instead employ
graph clustering method such as spectral clustering [31]. See
lines 7 and 8 in Algorithm 1. It has been shown that graph
clustering guarantees weak clustering in the considered regime
[31].

Steps 2 and 3 are identical to those in [18, 19]. For com-
pleteness, we describe the procedures yet in a brief manner.
Step 2 (Exact recovery of rating vectors): Based on the
initial clustering {C(0)

l }, we estimate vi via maximum likeli-
hood estimation i.e., majority voting in the case. For item j and
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cluster Cl, we collect the observed ratings of the item by the
users in C(0)

l . We set the jth entry of v̂l (estimate of vl) to be
the most frequently appeared one among the collected ratings.
Similarly we estimate all the entries by sweeping l ∈ [k].
See lines 10–15 for implementation details. It was shown in
[18, 19] that the simple majority voting ensures exact recovery
of rating vectors.
Step 3 (Exact recovery of clustering): We refine the cluster
{C(0)

l } using point-wise MLE in which the likelihood is
completed w.r.t. an interested user cluster while fixing the
other user’s clusters estimated in the prior iteration. See lines
21–28 for details. We apply T = O(log n) iterations, as it
is shown that the choice of T guarantees exact clustering
[18, 19]. For concreteness, as illustrated in lines 17–19, we
include a procedure for estimating (α, β, θ) (via MLE) needed
for the likelihood computation.

B. Proof Outline

Due to space limitation, we provide only the sketch of the
proof while leaving the complete proof in [43].

The proof consists of two parts. The first is to show that the
achievability proof boils down to the proof of weak recovery of
matrix clustering when p = ω( 1

m+ 1√
nm

). This will be proved
in Lemma 1. The second is to prove the weak recovery for
the regime of interest described in Lemma 1. See Lemma 2.

For the first part, we introduce two regimes: Regime 1 :=
{(p, Is) : p ≥ p∗, p < p̃}, Regime 2 := {(p, Is) : p ≥ p∗, p ≥
p̃} where p̃ is chosen as log logn

m . We claim that: (i) in Regime
1, p < p̃ implies Is = ω

(
1
n

)
; (ii) in Regime 2, p ≥ p̃ covers

Is = O( 1n ). This claim is proved in Lemma 1.
Lemma 1: If p ≥ p∗ and p < p̃, then Is = ω

(
1
n

)
. On the

other hand, if p ≥ p∗ and Is = O
(
1
n

)
, then p ≥ p̃.

The second part stated in Lemma 1 implies that p ≥ p̃
covers the remaining regime Is = O

(
1
n

)
as long as p ≥ p∗.

Hence, for Regime 2, it suffices to prove weak recovery of
matrix clustering. The proof of this is in Lemma 2.

Lemma 2: If p ≥ p∗ and p = ω
(

1
m + 1√

nm

)
, matrix-rating-

based clustering in Step 1 guarantees weak recovery.
Proof: Let Cl ∈ R1×k indicate the centers among the points
(each denoting a certain row in UY ) that correspond to cluster
Cl respectively. Let UG be an n-by-k matrix such that the
(ith row of UG) = Cl if i ∈ Cl. Here we prove that by using
the approximate k-means error bound techniques being used
in [25] (see Lemma 5.3 therein), the fraction of misclustered
users is bounded by ∥UY − UG∥2F up to a constant factor.
Hence, it suffices to show ∥UY −UG∥2F → 0 for proving weak
recovery. This proof is done in Lemma 3. This completes the
proof of Lemma 2. ■

Lemma 3: If p = ω
(

1
m + 1√

nm

)
, ∥UY − UG∥2F → 0 with

high probability as n,m→ ∞.
Remark 3 (Technical novelty): One major technical contri-

bution is reflected in Lemma 3. The key step in the proof is to
show that UY and the k leading ground-truth singular vectors
are very similar. To this end, we employ perturbation bounding
technique for singular subspaces in [25]. We then derive an

Algorithm 1: Proposed Algorithm
Input : Observed rating matrix Y ∈ {−1, 0, 1}n×m,

Graph G = ([n], E), The number of cluster k,
The number of iteration for cluster refinement T

Output: Estimate of a rating matrix M̂ ∈ {−1, 1}n×m

1 p̂← |Ω|/nm;
2 Step 1 (Initial clustering via a switching mechanism)
3 if p̂ > p̃ := log logn

m
then

4 UΣV T ← singular value decomposition of Y ;
5 UY ← k leading columns of U ;
6 Apply the k-means clustering w.r.t. UY to obtain an

initial estimate for clustering: {C(0)
l }l∈[k];

7 else
8 Apply graph-based clustering w.r.t. G to obtain an initial

estimate for clustering: {C(0)
l }l∈[k];

9 end
10 Step 2 (Recovery of rating vectors)
11 for item j = 1 to m do
12 for cluster l = 1 to k do
13 (v̂l)j ← sign

(∑
i∈C

(0)
l

Yij

)
;

14 end
15 end
16 Step 3 (Local refinement of clustering)
17 α̂← 1∑

l (

∣∣∣∣C(0)
l

∣∣∣∣
2

)

(∑
l |{{i1, i2} ∈ E : i1, i2 ∈ C

(0)
l }|

)
;

18 β̂ ← 1∑
l1 ̸=l2

∣∣∣C(0)
l1

∣∣∣∣∣∣C(0)
l2

∣∣∣
(∑

l1 ̸=l2
e(C

(0)
l1

, C
(0)
l2

)
)

;

19 θ̂ ← |{(i, j) ∈ [n]× [m] : Yij ̸= 0, Yij ̸= (v̂l)j , i ∈
C

(0)
l for any l ∈ [k]}|/|Ω|;

20 for iteration t = 1 to T do
21 C

(t)
l ← ∅ for all l ∈ [k];

22 for user i = 1 to n do
23 for cluster l = 1 to k do
24 Ll(i)← log

(
(1−β̂)α̂

(1−α̂)β̂

)
e({i}, C(t−1)

l ) +

log
(

1−θ̂

θ̂

)∑
j∈[m] 1(Yij = (v̂l)j);

25 end
26 l′ ← argmaxl Ll(i); L

(t)

l′ ← L
(t)

l′ ∪ {i};
27 end
28 end
29 for user i = 1 to n do
30 if i ∈ C

(T )
l then M̂i ← v̂l;

31 end
32 Return M̂

upper bound of sinΘ distance between UY and the ground-
truth singular vectors as a function of the variance of Yij’s, and
the k-th singular value of Y . In the case of k = 2, the closed
form solution of the singular value can be easily computed
because the ground-truth rating for each item is either same
or different. But in the generalized setting, since there are 2k−1

cases of the ground truth for each item, direct computation is
not that simple. To overcome this challenge, we employ linear
algebra techniques to derive the asymptotic bound of the k-th
singular value of Y as a function of n,m, k and δ. See Claim
1 in the full version [43] for details. ■

V. EXPERIMENTS

We provide Monte Carlo experiments to corroborate the
main result (Theorem 3).
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(a) Graph clustering (b) Matrix clustering (c) Proposed

Fig. 2: Achievable regimes of (p, Is) due to: (a) graph-
based clustering; (b) matrix-rating-based clustering; (c) our
proposed algorithm. Here the brightness indicates the level of
the empirical success rate; the brighter, the higher.

Synthetic data: We apply our algorithm to synthetic data
generated according to the model described in Section II.

Here, we consider a four-cluster setting where (θ, δ, n,m) =
(0.1, 0.2, 1000, 100). In Fig. 2, we evaluate the performance
of three algorithms via the empirical success rate for a rage
of (p, Is). Here the success rate is computed averaged over
200 random trials. The empirical success rate is visualized by
the brightness level; the brighter, the higher. The green line
indicates the sharp boundary indicated by the optimal sample
probability p∗ = p∗(Is). Fig. 2(a) shows the performance
of graph-clustering-based approach. Notice that the recovery
fails in the low Is regime. See the lower right corner of Fig.
2(a). On the other hand, in Fig. 2(b) w.r.t. matrix-rating-based
approach, recovery is mostly successful in the low Is regime,
however, it suffers from poor performance in the high Is (low
p) regime; see the upper left corner. By properly switching
between two clustering methods depending on p̂ (MLE of p),
our algorithm shows an enhanced performance for the entire
achievable regime; see Fig. 2(c).

Fig. 3: Optimal (theoretical, marked in blue circle) sample
probability vs. empirical (marked in red triangle) sample
probability as a function of k. Here the empirical sample
probability indicates the minimum p above which almost
all matrix entries (at least 99.95% entries) are successfully
recovered.

Fig. 3 demonstrates the performance for different numbers
of clusters. We sweep k from 3 to 10, while keeping θ = 0.1,
δ = 0.2, n = 2520, m = 800, Is = 3 logn

n . For y-axis, we
consider two quantities: (i) optimal sample probability; and
(ii) empirical sample probability. We mean by the empirical
sample probability the minimal p above which at least 99.95%
matrix entries (e.g., 2, 015, 000 out of 2, 016, 000 in the
considered setting) are successfully recovered. Observe that
the empirical sample probability is very close to the optimal
one for a range of k, corroborating our theoretical result.

(a) (b)

Fig. 4: Comparison of MAEs evaluated for various recom-
mendation algorithms using Facebook network [28]: (a) the
original network (high Is regime); (b) the sparse network
generated by subsampling (low Is regime).

Real data: As in [18–21, 23], we consider a semi-real data
setting in which a social graph is real while rating vectors are
synthetically generated as per our considered model.

As a real graph, we employ Facebook network [28] having
the four ground-truth clusters and n = 4675. We consider
two network settings: (i) the original network; (ii) a sparse
network generated by random subsampling (5%) of edges
from the original network. We synthesize ratings to construct
a rating matrix with (n,m) = (4675, 500). We use mean
absolute error (MAE) as a metric to compare ours with various
recommendation algorithms exploiting graph side information:
(i) item k-nearest neighbor (k-NN) [44]; (ii) user k-NN [44];
(iii) matrix factorization and social regularization (SoReg)
[14]; (iv) biased matrix factorization (Biased MF) [45]; (v)
TrustSVD [46]; and (vi) Yoon et al. [19] based solely on
graph clustering. As shown in Fig. 4, our algorithm shows
better performance than the other baseline algorithms, with a
more pronounced gain on the sparse network scenario.

VI. DISCUSSION

We developed a computationally efficient graph-assisted
matrix completion algorithm that promises the optimal sample
probability for the entire Is regimes as well as for an arbitrary
number k of clusters. The proposed algorithm generalizes the
prior switching-geared strategy to multiple cluster setting with
an analysis based on the derivation of asymptotic bounds of
singular values. One future work of interest is to develop a soft
version of the hard-decision selection mechanism proposed
herein. The soft version may be practically more appearing, as
it does not rely upon the estimate of p, which can be unreliable
in particular for a small-sized matrix. Another future work is to
go beyond the considered setting, addressing various network
scenarios explored in [20, 22, 23].
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