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Network Coding with Computation Alignment 

Naveen Goelat*, Changho Suh�*, and Michael Gastpart 

Abstract-Determining the capacity of multi-receiver networks 
with arbitrary message demands is an open problem in the 
network coding literature. In this paper, we consider a multi­
source, multi-receiver symmetric deterministic network model 
parameterized by channel coefficients (inspired by wireless 
network flow) in which the receivers compute a sum of the 
symbols generated at the sources. Scalar and vector linear coding 
strategies are analyzed. It is shown that computation alignment 
over finite field vector spaces is necessary to achieve the com­
putation capacities in the network. To aid in the construction of 
coding strategies, network equivalence theorems are established 
for the decomposition of deterministic models into elementary 
sub-networks. The linear coding capacity for computation is 
characterized for all channel parameters considered in the model 
for a countably infinite class of networks. The constructive coding 
schemes introduced herein for a specific class of networks provide 
an optimistic viewpoint for the application of structured codes in 
network communication. 

Index Terms-Vector linear network coding, computation ca­
pacity, computation alignment, structured codes. 

I. INTRODUCTION 

Traditionally, network coding for wired networks with or­
thogonal links [1] has been successfully applied in multicast 
communication in part due to the optimality of linear network 
codes including both random and deterministic polynomial­

time constructions [2]-[5]. However, for communication net­
works with general message demands, scalar and even vector 
linear codes were shown to be insufficient in characterizing 
capacity limits [6]. Without structure in the problem, there 
has been limited progress for inter-session network coding (see 
e.g.,  network coding with interference alignment for multiple­

unicast demands [7]). This motivates the need to isolate 
the problem of shared network resources and multi-receiver 
demands by looking at simplified communication models for 

which new structured codes may be designed. 

Recently coding for computation in networks has received 
considerable attention with applications to sensor networks. 
In [8] and [9], multiple-receivers in a sum-network compute 
the sum of the symbols generated at the sources. It is shown 
that there exists a linear solvably equivalent sum-network for 
any multiple-unicast network and vice-versa. The insufficiency 

of linear network coding for sum-networks is also established 
by correspondence to the result in communication networks, 
and an example of sum-network is given which is not solvable 
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over any field. In [lO]-[12], Appuswamy et a1. characterize 

the fundamental limits of computation in multi-source single 

receiver networks for linear and general target function classes. 
It is shown that the problem of computation in single-receiver 
networks is related (dual) to the multicast problem and hence 
tractable. In the present paper, we introduce structured network 

coding strategies based on computation alignment for multi­

receiver network models where each receiver demands a 
sum of the source symbols. We simplify the problem by 

considering only a single-hop deterministic model inspired by 
its connection to wireless information flows. 

Renewed interest in network coding has emerged recently 
due to the intimate connection between wireless information 

flow and wired networks. In [13], specific deterministic models 
are introduced such as the deterministic interference channel 

(IC) which closely approximates the Gaussian-IC in the limit 
of high signal-to-noise ratio. The deterministic network model 
is a generalization of networks with orthogonal links in 
the traditional network coding literature. Further connections 
between wireless communication and network coding were 
made in [14] where Nazer et a1. introduced the compute-and­
forward framework in which relay nodes in a network reliably 
compute functions of messages. Computation alignment over 
real vector spaces within the compute-and-forward framework 
was introduced in [15]. 

II. NETWORK MODEL AND PRELIMINARIES 

A sum-network is comprised of transmitters S 
{1,2 . . .  , lSI} and receivers T = {I, 2 . . .  , ITI}. 

Definition 1 (Source Information): Each transmitter s E S 
observes a source message Us E IF� in which each symbol 

Us [j] for 1 � j � k is drawn uniformly from a finite field IF p' 

Definition 2 (Encoders): Transmitter s uses encoder £�n) to 
map its message Us to a length-n codeword {Xs[i]}i=l where 

Xs[i] E IF�Xl is the channel input vector for the ith channel 
use. The mapping over n channel uses is 

c(n) . IFk ----' IFLxn "'s . p --, p . 

Definition 3 (Channel Model): The channel model for the 
ith channel use between transmitter s E S and receiver t E T 

is characterized by vector input Xs[i] E IF�Xl, transfer matrix 

Gs,t E IF�xL, and channel output yt[i] E IF�Xl. 

yt[i] = L Gs,tXs[i]. (1) 
sES 

For this paper, we restrict attention to a class of symmetric 
linear deterministic models [13] for which Gs,t is the identity 
matrix for s = t and Gs,t = G, for s i=- t. The matrix G, E 
IF�xL is a downshift matrix defined by parameters 0 � 0: � 1 
and shift, £ (0: - l )L . The entries G,(i,j) = 1 if i = j-, 
and G,(i,j) = 0 otherwise. The parameter 0: is constrained 

507 



2012 IEEE Information Theory Workshop 

to be rational such that 0: � T where m E Z+. The network 

is characterized by parameters (m, L). 
Example 1: The channel model includes broadcast and 

superposition which allows the possibility for in-network 

computation. I In Figure 1, a sum-network is shown with 

151 = ITI = 2, parameters (m, L) = (5, 6) and 0: = �. 
Definition 4 (Decoders): Each receiver t E T observes 

channel output vectors {yt[i]}i=l over n channel uses. The 

goal for receiver t is to reconstruct � using decoder gt: 
{'en) . lFLxn --+ lFk 
�t . P P' 

� = gt(yt[l], yt[2], ... , yt[n]), 

where � E lF� is an estimate for the following linear function 

of the source symbols: Vi [j] = 2:;=1 ,88U8 [j] for 1 � j � k. 
The function coefficients ,88 E IF p and all operations are taken 
over IF p' In this paper, we focus on sum-networks for which 
all coefficients ,88 = 1. 

Definition 5 (Computation Rate): A computation rate 

k 
ReoMP = - log2 p 

n 
is achievable in a sum-network if all receivers reliably com­
pute the sum of source symbols, i.e. if for any E > 0 and n 
large enough, there exist encoders [�n) and decoders gin) such 

that Pr ( (VI, .. " 1fT) =I- (VI, .. " VT)) � E. The computation 

capacity GeoM!' is the supremum of the achievable rates. 
Definition 6 (Linear Coding Capacity): As in [6], let 

the zero-error network coding capacity GCOMP (1) 

sup{�log2p : 3(k, n) network code that computes J}. A 

code computes f if 1ft E T, � = Vi, The linear coding 
capacity for computation G��MP is defined identically except 
that the network code consists only of linear mappings. 

III. MAIN RESULTS 

Theorem 1 (Linear Coding Capacity for Computation): 

Consider a sum-network with 151 = ITI = 2. Let p = 2 with 
encoding and decoding operations over IF 2. 

if 0 � 0: � �, 
if � < 0: < 1, 

if 0: = 1. 

(2a) 

(2b) 

(2c) 

In the regime � < 0: < 1, vector linear coding achieves higher 
computation rates than scalar linear coding. 

Corollary 1 (Limiting Capacity): As established by Theo­
rem 1, there exists a discontinuity at 0: = 1. 

Glin 2 lim sup COMP 
= -. 

L 3 0<-+1-

Proof For a given (m, L) network, if L mod 3 = 0 and 
0: � T = LL

1 , the construction given in Section V-AI leads 

to a computation rate of R'L'fP = �. This is the optimal rate 
assuming linear codes over IF 2 as discussed in Section V-B. 

• 

1 Several related types of linear deterministic channels have been studied as 
approximations to Gaussian channels and networks; see [13] or [16, Chap. 6.8] 
for further references. 
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Fig. 1. (Top) A symmetric deterministic sum-network model (m, L) = (5,6) 
with lSI = 2 transmitters and ITI = 2 receivers. For the ith use of the mem­
oryless channels, received signals Yl [i] and Y2�] are linear shift combinations 
of the input channel signals XI[i],X2[i] E IF2 xl 

(Bottom) The achievable 
computation rate R'LMP is plotted for different channel parameters a £ y 

for a countably infinite class of networks. 

Remark 1: For several types of multi-receiver networks, 
non-linear codes achieve higher rates than linear codes. How­
ever, in [17] we prove that Theorem 1 not only characterizes 
the linear coding capacity for computation, but indeed the full clin C computation capacity over 0 � 0: � 1: 'LM' - 'LMP 

IV. PROOF OF THEOREM 1: PART I 

For the regime 0 � 0: � �, we describe achievable coding 
strategies and the converse proof. 

A. Coding Strategies 

If both receivers decode both messages U1 and U2, both 

receivers can also compute U1 EEl U2. It can be shown that 
the multicast capacity for transmitting both messages to both 
receivers for an (m, L) network is given by R1 � m, 

R2 � m, and R1 + R2 � L. Therefore, a lower bound on 
the computation rate is RcoMP ?: min {m, �} which yields 

ReaM!' . { I} --- > mm 0: - . 
L 

- '2 
(3) 

Decoding both messages provides the optimal coding strategy 
for 0 � 0: � �. In order to achieve higher computation 
rates, the channel structure must be exploited for in-network 

computation. We introduce scalar linear network coding for 
the regime � � 0: � �. The code construction is provided in 

Fig. 2. For the figure, we introduce the notation aj � U1 [j] 
and bj � U2[j] for 1 � j � k to represent the message bits 
of the first and second transmitter respectively. Another way 
of describing the linear code is via beamforming vectors. To 
send k message bits over n = 1 channel use, both transmitters 
encode as follows: 
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Fig. 2. Scalar linear code construction for (m, L) networks for a £ T in 
the regime � ::; a ::; l The specific example is for the (3,5) model. The 
channel structure is exploited to compute the EB2-function of message bits. 

where tPj E IF�Xl and fj E IF�Xl are the beamforming 

or steering vectors for alignment in transmission. The code 
construction consists of designing all vectors tP j and f j at the 
transmitters (implicitly given in Fig. 2) so that the receivers 
may recover the computations aj + bj. 

B. Converse Proof 

Lemma 1 (Cut-set Upper Bound): Due to the cut-set 
bound, the computation rate is limited by the total entropy of 
the output signals. The upper bound is R'iMP ::; 1. 

Lemma 2 (Converse in Regime 0 ::; a ::; �): A non-trivial 
upper bound in the regime 0 ::; a ::; � is given by 

ReoMP < a. 

L -

Proof For the following steps, we write Xr and YIn 
to mean {Xl[i]}i=1 and {Yl[i]}i=1 respectively. By applying 
Fano's inequality, 

n(RcoMP) = H(UI EB U2), 
= J(UI EB U2; YIn) + H(UI EB U2Iy1n), 
::; J(U1 EB U2; YIn) + nEn, 

::; J(U1 EB U2; YIn, Ud + nEn, 

= J(UI EB U2; YIn lUI, Xf) + nE n, 
::; H(y1n!Vl, Xf) + nEn, 

::; L H(YliIXli) + nEn· 

The last inequality yields that n(ReoMP) ::; naL which proves 
the converse in the regime 0 ::; a ::; �. • 

V. PROOF OF THEOREM 1: PART II 

We prove that the linear coding capacity for computation 
� 6 

is COMP = .2 for all (m L) networks such that 
a 

= :!I!: is L 3 ' L 

in the regime � ::; a < 1 by utilizing the following network 
equivalence and decomposition theorems. 

A. Decomposition into Parallel Deterministic Models 

Theorem 2 (Decomposition Theorem): Any (m, L) model 
with 

a � T and � ::; a < 1 may be decomposed into "Gap-I" 
parallel models of the form (r, r + 1) where � ::; r�I' 

Proof See appendix for details. • 
Rlill 

Corollary 2: If a normalized computation rate of 'L"P = � 
can be attained in any model of the form (r, r + 1) for r 2: 2 

using linear coding, then a normalized computation rate of 
R� 2 2 

'iMP = 3 is achievable for any (m, L) model with 3 ::; a < 1. 
Remark 2: Ordinarily a decomposition into parallel models 

may not be helpful since coding across parallel models may 
be advantageous. For general parallel interference channels, 
there is no "separation" between parallel components. 

Example 2: The following (m, L) network decompositions 
into orthogonal components hold as examples:2 (7, 9) = 

(3, 4)x(4, 5) and (17, 21) = (8, 10)x(9, 11) = (4, 5)3x(5, 6). 
Theorem 3 (Computation Rate in "Gap-l" Models): In 

any "Gap-I" model defined by (r, r + 1) with r 2: 2, the 
Rlill 2 

computation rate achieved by linear codes is 'L'fP 2: 3' 
Proof We prove Theorem 3 by classifying network 

models (r, r + 1) with r 2: 2 into three different cases: 

1) (r + 1) mod 3 = O. 
2) (r + 1) mod 3 = 1. 
3) (r + 1) mod 3 = 2. 

Each of these three cases is proved separately in the following 
sections. 

1) The Case of (r + 1) mod 3 = 0: For these networks, 
e.g. (2, 3), (5, 6), (8, 9), (11, 12), only scalar network coding is 
necessary. The channel matrix Goy for these "Gap-I" networks 
is a downshift matrix with I = -1. Let k be the total number 
of message bits encoded by each receiver where k = 

2(ril) 
to give a normalized computation rate of �. A scalar network 
code consists of beamforming alignment vectors {tPj }}=1 for 

the first transmitter and {f j }}=l for the second transmitter. 

Let the notation ei E IF;+! denote the i-th coordinate vector. 
Consider the following paired alignments, 

tPl = el, fl = GoytPl = tP2, f2 = tPl, 
tP3 = e4, f3 = GoytP3 = tP4, f 4 = tP3, 

tPk-l = er-l,fk-l = GoytPk-l = tPk,fk = tPk-l. 

The above beamforming vectors allow two computations to 
be recovered at both receivers for each pair of consecutive 
alignment vectors {tPj,tPj+l,fj,fj+d (j odd) which span 
three orthogonal subspace dimensions at each receiver. The 
interleaving pattern is repeated in multiples of three dimen­
sions and tiles the whole space of r + 1 dimensions (where 
(r + 1) mod 3 = 0). The alignment applies to all networks of 
this type. 

2) The Case of (r + 1) mod 3 = 1: For these networks, 
e.g. (3, 4), (6, 7), (9, 10), (12, 13), vector network coding 
is necessary and we show that n = 3 channel uses is 

sufficient. Consider first the "indecomposable" model (3, 4) 
as an example. Figure 3 provides one linear code over n = 3 
channel uses which achieves a normalized computation rate 
of �. A total of 8 computations aj + bj are extracted at both 

receivers using only n(r + 1) = 12 transmitted symbols. 
For general network models in this class, we construct a 

vector linear code over n = 3 channel uses. It is observed 
(via network equivalences) that vector coding with n = 3 for 

2The symbol x denotes the concatenation of orthogonal models as by 
analogy to the mathematical notation JR2 

= JR x JR. 
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aj at aj aj 
a3 a3 a3 a3 
as a5 
a2 a2 

a4 

Fig. 3. Explicit scalar linear code for the (m, L) = (9,12) model. The code 
corresponds to a vector linear code over n = 3 channel uses of the (3,4) 
model. The computation rate achieved is optimal Rc�=p = -& = �, made 
possible by computation alignment. On the left, a total of 6 computation bits 
are possible using alternating computation alignment. On the right, 2 more 
computation bits for both receivers are possible due to careful alignment of 
beam forming vectors within the received dimensions. 

an (", + 1) model is identical to scalar linear coding over the 
model (3,, 3(, +  1)). As an example, vector coding with n = 3 
for the model (6, 7) is equivalent to scalar linear coding for 
the model (18, 21). We now show that linear code construction 
for the (18, 21) model follows in a straightforward manner 
from the achievable strategies already presented. On the left 

side of Figure 3, we observe that 6 computations are achieved 
over a total of 9 dimensions at both receivers. Subtracting 
these 9 dimensions completely from the (18, 21) model exactly 
"resets" the network model to a (9,12) model for which we 

know that using the code construction given in Figure 3, as 
many as 8 computations are possible. Thus, a total of 8 + 6 
computations are possible in the (18, 21) model which yields 
the normalized rate � for computation. The discussed approach 

generalizes to all network models of this class. 
3) The Case of (I + 1) mod 3 = 2: For these networks, 

e.g. (4, 5), (7, 8), (10, 11), (13, 14), vector network coding 
is again necessary over n = 3 channel uses. The code for 
the "indecomposable" (4, 5) model is provided in Figure 4. 
For other models in this series, we repeat our reasoning. 

As an example, vector coding with n = 3 for the model 

(7, 8) is equivalent to scalar linear coding for the (21, 24) 
model. The (21, 24) model is first "reset" by subtracting out 9 
dimensions (achieving 6 computations), resulting in a (12, 15) 
model which is equivalent to coding for the (4, 5) model over 

n = 3 channel uses. Similarly, all network models of this class 
are "reset" to yield the indecomposable (4, 5) model. • 

B. Upper Bound for Linear Coding Capacity for Computation 

Lemma 3 (Upper Bound on Linear Coding Capacity): 

Consider an (m, L) network model with p = 2 and linear 
encoding and decoding operations defined over IF2. Let 
a � !£'. In the regime 0::; a < 1, 

Rim 2 COMP < _ 

L - 3 
(5) 

Proof Consider any vector linear code over n channel 
uses for an arbitrary (m, L) network model. The vector linear 
code over the model (m, L) is equivalent to a scalar linear code 

over the model (nm, nL). The linear encoding is characterized 
by a set of k beamforming vectors at both transmitters: 

{1>j }j=1 and {fj }j=I' Assuming that k computations are 
successfully recovered by linear decoding at both receivers, 
our aim is to prove 

n
k
L ::; �. The observed vectors at both 

receivers are 

k k 

Yl = 2:aj1>j + 2:bjG,fj, 
j=1 j=1 

k k 

Y2 = 2:ajG,1>j + 2:bjfj. 
j=1 j=1 

1) Balancing Multi-Receiver Demands: For 1 ::; j ::; k, if 
the function aj + bj is to be recovered at both receivers, each 
receiver must either decode the computation aj + bj or decode 
aj and bj separately (and then compute aj + bj afterward). 

Consider the first receiver which observes the vector Y1 E IF�
L 

and attempts to decode the j-th computation aj + bj. In any 

linear code, either 1>j = G,fj and aj + bj can be decoded 
together as one computation (taking up one dimension at the 

receiver), or 1>j i- G,fj which means aj and bj lie on two 
separate linearly independent vectors. Similarly, for the second 
receiver observing Y2 E IF�

L
, either G,1>j = fj or G,1>j i­

f j. Due to the properties of the network model, conditions 
involving both receivers hold in the case that a < 1 strictly 
and G, is not full rank: 

1>j = G,fj =} G,1>j i- fj, 
G,1>j = fj =} 1>j i- G,fj. 

2) Checkerboard Proof Based on the above arguments 
for linear coding over IF 2, only three joint configurations are 
possible for the following received vectors {1> j, G,f j} at 
the first receiver and {G,1>j, fj} at the second receiver. Let 
dj,l, dj,2 represent the dimension of the subspaces spanned 
by the received vectors at the two receivers respectively due 
to the j-th encoding vectors. Either (dj,l, dj,2) = (1, 2), 
(dj,l, dj,2) = (2, 1), or (dj,l, dj,2) = (2, 2). In order for both 

receivers to recover aj + bj, due to the assumption of linearity 

and the need for linear independence of received vectors, the 
received vectors {1>j,G,fj} at the first receiver must not 
overlap with the prior subspaces, and the received vectors 
{G,1>j, fj} at the second receiver must not overlap with 
prior subspaces. Imagine an integer square lattice that is of 
size nL x nL representing the maximum number of subspace 
dimensions at both receivers. From the origin, imagine making 
k moves on the board: either we take two steps to the right 
and one step up, or one step to the right and two steps up. By 
basic geometry, the maximum number of moves is bounded 
as 3k ::; 2nL to remain on the square grid. 

• 
VI. CONCLUSION 

Computation alignment strategies were introduced for func­
tion multicasting in a multi-receiver sum-network. Vector and 
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b4 
b6 + bs a, + b, a3+b3+bS as + b5 + a7 + b7 + b10 

- - - -a2 + Os - - -a4 + a7 + b7 + blO a6+a8+ag+bg a7 + b7 a8+ag+bg 
a10 + b10 as alO 

bs+ag+bg 

Fig. 4. Explicit scalar linear code for (m, L) = (12,15). The code 
corresponds to a vector linear code (over n = 3 channel uses) of the 
�, 5) "indecomposable" model. The computation rate achieved is optimal 

c�=p = � = �. On the left, a total of 6 computation bits are possible 
using alternating computation alignment. On the right, 4 more computation 
bits for both receivers are possible due to careful alignment of beam forming 
vectors within the received dimensions. 

scalar linear coding strategies were analyzed. With multiple­
receivers, a key challenge is to balance shared network re­
sources with receiver demands. A good network code allows 
for in-network computation as opposed to recovering all 
messages at the receivers. The linear coding capacity for 
computation was determined for a countably infinite class 
of deterministic models. Several network equivalence and 
decomposition theorems were developed which have potential 
for the design of structured codes in multi-hop networks. 

ApPENDIX 

Theorem 2 is due to Lemma 4 below which follows directly 
from interleaving arguments. The network equivalences apply 
to straight data transfer (any message configuration) as well 
as for function computation. 

Lemma 4 (Network Equivalence): 

1) For any nEZ, (nm, nL) = (m, L) x (m, L) x . . .  x 
(m, L) (a total of n factors). As a byproduct of this fact, 
vector linear coding over n channel uses of an (m, L) 
network model is identical to scalar linear coding over 
the channel model (nm, nL). 

2) (2m + 1, 2L + 1) = (m, L) x (m + 1, L + 1). 
3) "Gap-2" models. There are two cases, even and odd: 

a) For any £ E Z: (2£, 2£ + 2) = (£, £  + 1) x (£, £ + 1). 
This is a special case of item 1. 

b) For any £ E Z: (2£+1, 2£+3) = (£, £+1)x (£+1, £+2) 
(special case of item 2) 

4) "Gap-3" models. There are three cases: 

a) For any £ E Z: (3£, 3£ + 3) = (£, £ +  1) x (£, £ +  1) x 
(£, £ + 1) (special case of item 1) 

b) For any £ E Z: (3£ + 1, 3£ + 4) = (£, £ + 1) x (£, £ + 
1) x (£ + 1, £ + 2) 

c) For any £ E Z: (3£ + 2, 3£ + 5) = (£, £ + 1) x (£ + 
1, £ + 2) x (£ + 1, £ + 2) 

Observe that the "Gap-3" models can be decomposed into 
three "Gap-I" models. 

5) "Gap-k" models: In general, we can give the following 
formula: 

(m, L) (r, r+ 1)L-m-a x (r+ 1, r+ 2)a, 

where 

r= lL �m J and a = m mod (L -m) 

Proof Outline for the Last Item. In the graph representation of 

the (m, L) model, color the vertices of the first user with L-m 
colors, starting from the top and periodically going through all 
colors. Use exactly the same coloring for the receiving vertices 
of the first user as well as for both transmitting and receiving 
vertices of the second user. Direct inspection reveals that each 
color represents an orthogonal component model, and that each 
component model is again a standard symmetric model, albeit 
of the form (r, r+1). A tedious but straightforward calculation 
leads to the claimed formula. 
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