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Abstract— We investigate the role of relays in multiple access
channels (MACs) with bursty user traffic, where intermittent
data traffic restricts the users to bursty transmissions. Specifi-
cally, we examine a K-user bursty MIMO Gaussian MAC with
a relay, where bursty traffic of each user is governed by a
Bernoulli random process. As our main result, we characterize
the degrees of freedom (DoF) region. To this end, we extend
noisy network coding, in which relays compress-and-forward,
to achieve the DoF cut-set bound. From this result, we establish
the necessary and sufficient condition for attaining collision-free
DoF performances. Also, we show that relays can provide a DoF
gain which scales to some extent with additional relay antennas.
Our results have practical implications in various scenarios of
wireless systems, such as the Internet of Things (IoT) and media
access control protocols.

I. INTRODUCTION

Many practical wireless systems can be viewed as multiple
access channels (MACs) where multiple transmitters wish to
deliver their messages to one receiver. Examples span from
an office network in which multiple electronic devices are
connected to a Wi-Fi access point (wireless LANs) to a
single cell in which many mobile devices communicate with
a base station (cellular networks). The standard information-
theoretic model that studies these systems is a two-user
Gaussian MAC and its capacity region is characterized.

Some work on variants of the MAC has been done. Past
work on relay networks developed several coding strategies
for the MAC with a relay [1]. Although its capacity region
is still unknown, one thing is certain from the derived outer
bounds. In the MAC, relays cannot provide a degrees of
freedom (DoF) gain [2].

However, it is premature to conclude that relays play
little role. Unlike many information-theoretic models which
conventionally assume transmissions to occur at all times, in
practice, transmissions take place in a bursty manner. One
source of such burstiness can be intermittent data traffic that
limits the amount of data available for transfer at transmitters.
In fact, it is such burstiness that needs particular attention to
investigate the role of relays in practical wireless systems.

Hence, in this work, we examine the role of relays in
bursty MACs. An example in the simplest model, a two-
user bursty Gaussian MAC with a relay where all nodes
have a single antenna, indicates that employing relays can be
beneficial in bursty networks. Fig. 1 demonstrates a scheme
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Fig. 1. An achievable scheme in the two-user single-antenna setting. The
relay exploits an idle moment of the transmitters to deliver a useful symbol
to the receiver. This relay operation helps resolve a collision.
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Fig. 2. The sum DoF in the two-user single-antenna setting with and
without a relay. We can observe a DoF gain. Interestingly, we can also
observe a collision-free DoF performance with low data traffic.

that achieves the sum DoF of the two-user single-antenna
setting, where each transmitter is active with probability p.
It shows how the relay helps resolve a collision that occurs
when both transmitters become active.

• Time 1: Both transmitters are active. The receiver gets
a linear sum of two symbols. It cannot decode any of
them. The relay gets another linear sum of the symbols.

• Time 2: Both transmitters are inactive. The relay for-
wards its past received linear sum. With the two linear
sums, the receiver can decode the two symbols.

We see one simple idea: the relay exploits an idle moment
of the transmitters. It receives a useful symbol while both
transmitters are active, and forwards the symbol to the re-
ceiver while they are inactive. This helps resolve a collision.

Using this idea and the DoF cut-set bound, one can readily
verify that the sum DoF is min(2p, 1). Fig. 2 illustrates the
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sum DoF in comparison with the sum DoF without a relay.
We can observe that there is a DoF gain for all levels of
data traffic. More interestingly, we can see that with low
data traffic (p < 1

2 ), both transmitters achieve the individual
DoF of p. This is in effect a collision-free DoF performance.

Motivated by this result in the two-user single-antenna
setting and the key idea behind it, we further explore a more
general setting: a K-user setting where all nodes have mul-
tiple antennas. Not only do we aim to characterize the DoF
region, we also pay particular attention to practical benefits
of employing relays. We raise two questions: “What is the
necessary and sufficient condition for attaining collision-free
DoF performances?” and “Is the DoF gain scalable with
additional relay antennas?”

The beneficial receive-and-forward relay operation makes
it natural for us to extend the noisy network coding
scheme [3], which features compress-and-forward strategies
of relay nodes [4]. By showing that the extended scheme
can achieve the DoF cut-set bound, we characterize the DoF
region of the K-user bursty MIMO Gaussian MAC with a
relay (Theorem 1). Furthermore, we give answers to the two
questions we raise. We establish the necessary and sufficient
condition for collision-free DoF performances in the K-
user setting: all K transmitters achieve their individual DoF
(Corollary 1). Also, we show that relays can offer a DoF gain
which scales to some extent with additional relay antennas.

Our results have implications in practical wireless systems,
especially where multiple sources deliver data to a single
destination in a bursty manner. One such system can be the
Internet of Things (IoT), which refers to a network of objects
that gather, exchange, and process data. In usual scenarios,
many objects gather small amounts of data and deliver
them to a central hub, and the hub performs some function
based on the collected data. The objects may transmit bursty
signals due to intermittent data traffic. Another system can
be a network with media access control protocols. Bursty
transmissions can take place in such networks, since multiple
sources sharing a common medium want to avoid collisions
that possibly degrade overall performance. In both systems,
our results indicate that relays can be beneficial in achieving
higher data throughput, and collision-free communication.

II. PROBLEM FORMULATION

Fig. 3 describes the K-user bursty MIMO Gaussian mul-
tiple access channel (MAC) with a relay. The transmitters,
the receiver, and the relay have M , N , and L antennas,
respectively. Transmitter k wishes to deliver a message Wk

reliably to the receiver, ∀k = 1, . . . ,K.
Let Xkt ∈ CM be transmitter k’s encoded signal at time t,

and XRt ∈ CL be the relay’s encoded signal at time t.
Multiplicative traffic states Skt are assumed to be indepen-
dent, Bern(p), and i.i.d. over time to govern uncoordinated
bursty transmissions1. The relay is not restricted to bursty
transmissions; it intends to help deliver the messages based

1In this work, we consider intermittent data traffic to be a primary source
of burstiness. Later in this paper, we discuss random media access control
protocols being another source.
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Fig. 3. K-user bursty MIMO Gaussian MAC with a relay.

on its past received signals, thus it can send signals at all
times as long as it has past received signals.

Additive noise terms Zt at the receiver and ZRt at the relay
are assumed to be independent, CN (0, IN ) and CN (0, IL),
and i.i.d. over time. Let Yt ∈ CN be the received signal of
the receiver at time t, and YRt ∈ CL be the received signal
of the relay at time t.

Yt =

K∑
k=1

HkSktXkt +HRXRt + Zt,

YRt =

K∑
k=1

HRkSktXkt + ZRt.

The matrices Hk and HRk describe the time-invariant chan-
nels from transmitter k to the receiver and to the relay
respectively. The matrix HR describes the time-invariant
channel from the relay to the receiver. All channel matrices
are assumed to be full rank.

We assume current traffic states are available at the re-
ceiver and the relay, since receiving ends can detect which
transmitting end is active by measuring the energy levels of
incoming signals. We also assume the transmitters get feed-
back of past traffic states from the receiver. Each transmitter
knows its own current traffic state, as it finishes processing
the arrivals of data for transmission.

Transmitter k encodes its signal at time t based on its
own message, its own current traffic state, and the feedback
of past traffic states: Xkt = fkt(Wk, Skt, S

t−1), where St

stands for (S1t, . . . , SKt) and St−1 stands for the sequence
up to t−1. The relay encodes its signal at time t based on its
past received signals, and both past and current traffic states:
XRt = fRt(Y

t−1
R , St).

We define the DoF region D = {(d1, . . . , dK) :
∃(R1, . . . , RK) ∈ C(P ) such that dk = limP→∞

Rk

logP },
where C(P ) is the capacity region with power constraint P .
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III. MAIN RESULTS

We characterize the DoF region of the K-user bursty
MIMO Gaussian MAC with a relay. We give an outline of
the proof in Section IV. The proof in further detail is in
Appendix I, where we show that the DoF cut-set bound is
achievable by extending noisy network coding [3].

Theorem 1: The DoF region of the K-user bursty MIMO
Gaussian MAC with a relay is characterized as follows.

∑
k∈A

dk ≤ min


|A|∑
i=0

P|A|,p(i)min (iM,N + L) ,

|A|∑
i=0

P|A|,p(i)min (iM + L,N)

 , (1)

where A ⊆ {1, . . . ,K} and P|A|,p(i) :=
(|A|

i

)
pi(1−p)|A|−i.

And, we establish the necessary and sufficient condition
for attaining collision-free DoF. The proof of necessity is in
Appendix II, where we examine if the sum DoF is equal to
K times the individual DoF for a certain range of p. The
proof of sufficiency follows by Theorem 1.

Corollary 1: The necessary and sufficient condition for
attaining collision-free DoF for p ∈ (0, p∗), where p∗ ∈
(0, 1], in the K-user bursty MIMO Gaussian MAC with a
relay is as follows.

KM ≤ N + L. (2)

A. Collision-free DoF performances

We can answer our first question with Corollary 1. Con-
dition (2) includes an obvious case in which the number
of receive antennas is greater than or equal to the total
number of transmit antennas (KM ≤ N ). In this case, the
receiver can decode all symbols instantaneously even when
all transmitters become active at the same time. We can
achieve the collision-free DoF of KMp without a relay. A
relay is of little use.

In the other case (KM > N ), condition (2) says that
we need a relay to achieve collision-free DoF performances
and that the relay should have at least KM − N antennas.
This is a condition that intuitively comes to mind; when all
transmitters become active at the same time, the relay should
be able to get the number of linear sums that the receiver
additionally needs to decode all symbols.

What is left is to make sense of what operation of
the relay makes it possible to achieve collision-free DoF
performances. In proving sufficiency for attaining collision-
free DoF, we extend the noisy network coding scheme [3],
one of whose key ideas is to compress-and-forward [4].
When extending the scheme, we let the relay receive-and-
forward without compression. Fig. 4 illustrates the relay
operation: when only a few transmitters are active (or none),
the relay fills in otherwise unused antennas of the receiver
with symbols, the symbols that help resolve past collisions.
Again apparent is the key idea in this work: to exploit idle
moments of the transmitters. With low data traffic, it is more
likely that a few transmitters are active. In such scenarios,
compared to the rate at which collisions occur, the relay more
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Fig. 5. The sum DoF of three antenna configurations: (K,M,N,L) =
(4, 1, 2, 0), (4, 1, 2, 1), (4, 1, 2, 2). We can observe limited scalability of
the DoF gain with additional relay antennas.

frequently finds opportunities to deliver symbols intended
for resolving the collisions to the receiver, thus leading to
collision-free DoF performances.

There is an interesting difference to note between the relay
operations in bursty MACs and interference channels (ICs).
Recent work on a two-user bursty MIMO Gaussian IC with
a relay, focusing on interference-free DoF performances,
develops a scheme in which the relay cooperates with
active transmitters [5]. From this cooperation, they remove
interference in the air. This suggests that more sophisticated
operations of the relay may be required to achieve optimality
in other multi-user bursty networks.

B. DoF gain scalability with relay antennas

Except for the case of KM ≤ N in which the presence
of a relay is of little help, we benefit from having a relay
as it provides a DoF gain. To see how much gain it can
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offer, we compare the sum DoF of three antenna configura-
tions in which only the number of relay antennas varies:
(K,M,N,L) = (4, 1, 2, 0), (4, 1, 2, 1), (4, 1, 2, 2). Fig. 5
illustrates the sum DoF of the three antenna configurations.
We can answer our second question. We can observe that the
DoF gain scales with additional relay antennas. However, the
scalability is limited: the gain from adding one additional
relay antenna diminishes fast, and soon vanishes.

This limited gain can be explained with an analogy. In
bursty MACs, there is one receiver to which all transmitters
wish to deliver their message; they are sharing one pie. One
transmitter sending at higher rates necessarily means the
other transmitters sending at lower rates. Employing a relay
is shown to be beneficial, but not significantly. The relay
may help the transmitters consume the pie better, but after
all, it cannot increase the size of the pie no matter how well
it operates.

In bursty ICs, it is a different story. Recently it is shown
that a relay can offer a DoF gain in bursty ICs that can scale
linearly with additional relay antennas [5]. In the IC case,
in contrast with the MAC case, each transmitter wishes to
deliver their message to its own intended receiver; they are
not sharing one pie. One transmitter sending at higher rates
could mean the other transmitters sending at lower rates, but
it does not result from exclusively consuming the pies of
the others. Rather, it results from hindering the others from
having theirs. Employing a relay is shown to be significantly
beneficial. The relay can help the transmitters consume their
own pie only, so that each consumes its own not hindered
by the others.

IV. PROOF OUTLINE OF THEOREM 1

In this section, we briefly outline the proof of Theorem 1.
For the outer bound proof, we directly follows the standard

cut-set argument. To get the DoF outer bound that matches
the claimed DoF region (1), we evaluate the cut-set bound
with the Gaussian distributions with power constraint P that
maximize the mutual information terms [6]. And we take the
limit as P → ∞ after dividing the evaluated cut-set bound
by log(P ). Then, we get the DoF outer bound that matches
the claimed DoF region (1).

For the inner bound proof, we extend noisy network
coding [3]. The transmitters and the relay do not make use of
any information of traffic states, although they have access
to (part of) it, whereas the receiver does. This is equivalent
to the case where information of traffic states is available
only at the receiver. Hence, we treat the received signal and
the traffic states ((Y, S), where S stands for the traffic states
of all transmitters) as the output of the channel. With direct
calculations, we get the following achievable rate region.

Lemma 1: An achievable rate region of the K-user bursty
MIMO Gaussian MAC with a relay includes the set of
(R1, . . . , RK) such that (without time-sharing)

∑
k∈A

Rk < min

 I(X(A);Y, ŶR|S,X(Ac), XR),
I(X(A), XR;Y |S,X(Ac))

−I(YR; ŶR|S,X1, . . . , XK , XR, Y )



for some distribution
∏K

k=1 F (xk)F (xR)F (ŷR|yR, xR) such
that E[X2

k ] ≤ P and E[X2
R] ≤ P , where A ⊆ {1, . . . ,K}.

We can compute the rate penalty term (the subtracted
mutual information term) for some choice of ŶR to show that
it does not scale with power constraint P . This is shown in
Appendix I. Except for this term, notice that the inner bound
is similar to the cut-set bound.

To get the DoF inner bound that matches the claimed DoF
region (1), we evaluate the achievable rate region with the
independent Gaussian distributions with power constraint P .
And we take the limit as P →∞ after dividing the evaluated
achievable rate region by log(P ). Then, the rate penalty term
vanishes, and we get the DoF inner bound that matches the
claimed DoF region (1).

V. LINK TO THE INTERNET OF THINGS

The bursty model in this work can be naturally translated
into many practical wireless systems. In this section, we
discuss implications of our results in one of such systems. As
device-to-device communication has been widely available,
the Internet of Things (IoT) is receiving attention. A simple
example of the IoT can be a network, consisting of a central
hub with multiple sensors, that computes the average room
temperature: the sensors located at various places deliver
measurements to the hub, and the hub computes the average.

Let us consider a natural scenario of the IoT. There is
a hub, to which many wireless devices are connected, that
wishes to perform some function based on the signals from
the devices. It would not be odd to assume that the hub has
more antennas than one device has, and less antennas than all
devices combined have, since it manages many concurrently.
Also, it would be natural to assume each device, constituting
a small part of the network, has intermittent traffic of small-
sized data to deliver. This scenario well fits with a bursty
MAC where M < N , KM > N , and p� 1. Here, we can
ask the question: if we were to employ a relay to help all
devices deliver data at their best, how many antennas should
we install at the relay and how should the relay operate?

Our results say that by employing a relay with at least
KM − N antennas that performs a simple receive-and-
forward operation, we can make all devices connected to
the hub deliver their data effectively without collisions. Not
only does the relay increase overall data throughput, it also
has practical benefits in systems design. When data traffic is
sufficiently low, the relay eases the need of the devices to
coordinate their transmissions to avoid possible performance
degradation. It also eases the need of exchanging acknowl-
edge signals between the hub and the devices to let each
other know the receptions of previously sent signals.

VI. LINK TO MEDIA ACCESS CONTROL PROTOCOLS

When we formulate our problem, we consider intermittent
data traffic as a primary source of bursty transmissions.
They can, however, result from a random media access
control protocol with which multiple transmitters sharing a
common medium comply. Now, transmitters send signals in
a bursty manner, not because data to transfer is intermittently
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available, but because they want to avoid collisions. Although
the source of burstiness is different, our bursty model well
captures this scenario.

Let us consider a wireless system with a simple protocol.
K transmitters with M transmit antennas wish to send
signals to a receiver with N receive antennas. There is a
relay with enough antennas from which this wireless system
benefits. Similarly as before, suppose M < N and KM >
N hold. To avoid collisions that possibly degrade overall
performance, each transmitter sends signals according to a
protocol: sending signals with probability p and making such
decisions independently over time. In this case, probability p
no longer represents bursty data traffic as in our original
model. Rather, it is now a design parameter of the system.
The natural question to ask is: how to choose p to achieve
the best performance?

Our results say that by choosing p = N
KM , we can achieve

the best performance, with no one transmitter lowering
its performance for the sake of the others. This threshold
probability makes sense, since the relay schedules bursty
transmissions of all transmitters and lets them equally share
the receiver. The scheduling role of the relay relaxes the
complication of the protocol. There is no need of feeding
back some information from the receiver to the transmitters
to manage collisions.

VII. CONCLUSION

We characterized the DoF region of the K-user bursty
MIMO Gaussian MAC with a relay. Moreover, we estab-
lished the necessary and sufficient condition for achieving
collision-free DoF performances. Intuitively, the receive-and-
forward operation of the relay exploits idle moments of the
transmitters, and in effect schedules bursty transmissions
to achieve the performances when data traffic is low. We
observed that relays can provide a DoF gain which scales
to some extent with additional relay antennas. Our results
show practical benefits of employing relays into wireless
systems where multiple sources wish to deliver data to a
single destination in a bursty manner.
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APPENDIX I
PROOF OF THEOREM 1

In this appendix, we prove Theorem 1. We give a proof
for the two-user setting for simplicity. It is straightforward
to extend the proof for the K-user setting.

First, from the standard cut-set argument, we get the
following outer bound:

R1 ≤ min

[
I(X1;Y, YR|S,X2, XR),
I(X1, XR;Y |S,X2)

]
,

R2 ≤ min

[
I(X2;Y, YR|S,X1, XR),
I(X2, XR;Y |S,X1)

]
,

R1 +R2 ≤ min

[
I(X1, X2;Y, YR|S,XR),
I(X1, X2, XR;Y |S)

]
,

for all distributions F (X1, X2, XR) such that E[X2
1 ] ≤ P ,

E[X2
2 ] ≤ P , and E[X2

R] ≤ P .
We evaluate the outer bound with the Gaussian distribu-

tions with power constraint P that maximize the mutual
information terms [6]. And we take the limit as P → ∞
after dividing the evaluated outer bound by log(P ). Then,
we get the DoF outer bound that matches (1) for the case of
K = 2.

Next, we extend the noisy network coding scheme [3]. The
transmitters and the relay do not make use of any information
of traffic states, although they have access to (part of) it.
Hence, transmitter k encodes its signal at time t based on
its message: Xkt = fkt(Wk). The relay encodes its signal at
time t based on its past received signals: XRt = fRt(Y

t−1
R ).

On the other hand, the receiver makes use of information
of traffic states. Thus, we treat (Yt, St) as the output of the
channel at time t. Now, we get the following achievable rate
region (without time-sharing):

R1 < min

 I(X1; (Y, S), ŶR|X2, XR),
I(X1, XR; (Y, S)|X2)

−I(YR; ŶR|X1, X2, XR, (Y, S))

 ,

R2 < min

 I(X2; (Y, S), ŶR|X1, XR),
I(X2, XR; (Y, S)|X1)

−I(YR; ŶR|X1, X2, XR, (Y, S))

 ,

R1 +R2 < min

 I(X1, X2; (Y, S), ŶR|XR),
I(X1, X2, XR; (Y, S))

−I(YR; ŶR|X1, X2, XR, (Y, S))

 ,

for some distribution F (x1)F (x2)F (xR)F (ŷR|yR, xR) such
that E[X2

1 ] ≤ P , E[X2
2 ] ≤ P , and E[X2

R] ≤ P .
The traffic states (S1t, S2t) are independent of the mes-

sages (W1,W2) and the noise at the relay (Zt
R). Also, they

are i.i.d. over time. Since Xkt = fkt(Wk) and XRt =
fRt(Y

t−1
R ), the traffic states (S1t, S2t) are independent of

(X1t, X2t, XRt). Therefore, I(Xk∈B;S|Xk∈Bc) = 0, where
B ⊆ {1, 2, R}. Using the chain rule and this equality, we
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calculate the mutual information terms and get the following
achievable rate region:

R1 < min

 I(X1;Y, ŶR|S,X2, XR),
I(X1, XR;Y |S,X2)

−I(YR; ŶR|S,X1, X2, XR, Y )

 ,

R2 < min

 I(X2;Y, ŶR|S,X1, XR),
I(X2, XR;Y |S,X1)

−I(YR; ŶR|S,X1, X2, XR, Y )

 ,

R1 +R2 < min

 I(X1, X2;Y, ŶR|S,XR),
I(X1, X2, XR;Y |S)
−I(YR; ŶR|S,X1, X2, XR, Y )

 ,

for some distribution F (x1)F (x2)F (xR)F (ŷR|yR, xR) such
that E[X2

1 ] ≤ P , E[X2
2 ] ≤ P , and E[X2

R] ≤ P .
We compute the rate penalty term using almost the same

method in [6]. We set ŶR = YR + ẐR, where ẐR ∼
CN (0, IL) and is independent of (S,X1, X2, XR, Y, YR).
We get the following rate penalty:

I(YR; ŶR|S,X1, X2, XR, Y )

(a)
= h(ŶR|S,X1, X2, XR, Y )− h(ŶR|S,X1, X2, XR, Y, YR)

(b)

≤ h(ŶR|S,X1, X2, XR)− h(ŶR|S,X1, X2, XR, Y, YR)

(c)
= h(ZR + ẐR)− h(ẐR)

(d)
= L,

where (a) follows by the chain rule; (b) follows by the fact
that conditioning reduces differential entropy; (c) follows by
the fact that ẐR is independent of (S,X1, X2, XR, Y, YR);
(d) follows by the fact that ZR ∼ CN (0, IL) and ẐR ∼
CN (0, IL) are independent.

We evaluate the inner bound with the independent Gaus-
sian distributions with power constraint P . And we take the
limit as P →∞ after dividing the evaluated inner bound by
log(P ). Then, the rate penalty term vanishes, and we get the
DoF inner bound that matches (1) for the case of K = 2.

In conclusion, we get the matching DoF inner and outer
bounds. Therefore, we characterize the DoF region of the
two-user bursty Gaussian MAC with a relay.

It is straightforward to extend the proof for the two-user
setting to that for the K-user setting. The outer bound can
be derived from the standard cut-set argument. The inner
bound can be derived from the noisy network coding scheme.
Except for the fact that the number of input distributions
increases, the exact same line of reasoning holds. We char-
acterize the DoF region of the K-user bursty Gaussian MAC
with a relay.

∑
k∈A

dk ≤ min


|A|∑
i=0

P|A|,p(i)min (iM,N + L) ,

|A|∑
i=0

P|A|,p(i)min (iM + L,N)

 ,

where A ⊆ {1, . . . ,K} and P|A|,p(i) :=
(|A|

i

)
pi(1−p)|A|−i.

APPENDIX II
PROOF OF COROLLARY 1

In this appendix, we prove Corollary 1. We examine if
for a certain class of antenna configurations, an upper bound
on the sum DoF is strictly less than K times the individual
DoF for all p ∈ (0, 1). Then, the corresponding class is not
a necessary condition for attaining collision-free DoF.

If for a certain class of antenna configurations, K times
the individual DoF is less than or equal to the sum DoF for
p ∈ I where I ⊆ (0, 1), then the corresponding class is
the necessary and sufficient condition for attaining collision-
free DoF, since the individual DoF and the sum DoF are
achievable from Theorem 1.

A. KM > N + L and M ≤ N

From M ≤ N , pmin(M,N + L) = pM . From M ≤
M + L and M ≤ N , pM ≤ pmin(M + L,N). Thus, we
get the individual DoF of pM .

Using the fact that min(a, b) ≤ a, we get an upper bound
on the sum DoF:

∑K
i=0 PK,p(i)min(iM,N + L).

K∑
i=0

PK,p(i)min(iM,N + L)

=

K−1∑
i=0

PK,p(i)(iM) + PK,p(K)(N + L)

<

K−1∑
i=0

PK,p(i)(iM) + PK,p(K)(KM)

=

K∑
i=0

PK,p(i)(iM) = K(pM),

where the last equality is the expectation of a binomial
random variable with parameters K and p.

In summary, the upper bound on the sum DoF is strictly
less than K times the individual DoF for all p ∈ (0, 1). This
class of antenna configurations is not a necessary condition
for attaining collision-free DoF.

B. KM > N + L, M > N + L, and L = 0

From M > N and L = 0, we get the individual DoF of
pN .

Using the fact that min(a, b) ≤ a and L = 0, we get an
upper bound on the sum DoF:

∑K
i=0 PK,p(i)min(iM,N) =

{1− (1− p)K}N .
Let f(p) = K(pN)− {1− (1− p)K}N . Since f(0) = 0

and f ′(p) = KN{1 − (1 − p)K−1} > 0 for all p ∈ (0, 1),
f(p) > 0 for all p ∈ (0, 1).

In summary, the upper bound on the sum DoF is strictly
less than K times the individual DoF for all p ∈ (0, 1). This
class of antenna configurations is not a necessary condition
for attaining collision-free DoF.
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C. KM > N + L, M > N + L, and L ≥ 1

From M > N + L, pmin(M,N + L) = p(N + L).
From M > N , pmin(M + L,N) = pN . Thus, we get
the following individual DoF.

d ≤ min {p(N + L), pN + (1− p)min(L,N)} .

Let pi :=
min(L,N)

L+min(L,N) . For 0 < p < pi, the individual DoF
is p(N + L). Using the fact that min(a, b) ≤ a, we get an
upper bound on the sum DoF:

∑K
i=0 PK,p(i)min(iM,N +

L) = {1 − (1 − p)K}(N + L). Using the same method in
the earlier case, we can verify that the upper bound on the
sum DoF is strictly less than K times the individual DoF for
0 < p < pi.

For pi ≤ p < 1, the individual DoF is pN + (1 −
p)min(L,N). Using the fact that min(a, b) ≤ b, we get
an upper bound on the sum DoF:

∑K
i=0 PK,p(i)min(iM +

L,N) = (1 − p)K min(L,N) + {1 − (1 − p)K}N . For
pi ≤ p < 1, (1 − p)K min(L,N) is strictly less than
K{(1 − p)min(L,N)} and so is {1 − (1 − p)K}N than
K(pN). In other words, the upper bound on the sum DoF is
strictly less than K times the individual DoF for pi ≤ p < 1.

In summary, the upper bounds on the sum DoF are strictly
less than K times the individual DoF for all p ∈ (0, 1). This
class of antenna configurations is not a necessary condition
for attaining collision-free DoF.

D. KM > N + L, N < M ≤ N + L, and L ≥ 1

From M ≤ N +L, pmin(M,N +L) = pM . From N <
M , pmin(M + L,N) = pN . Thus, we get the individual
DoF of min {pM, pN + (1− p)min(L,N)}. When pM is
active, by using the same method in Appendix II-A, when
pN+(1−p)min(L,N) is active, by using the same method
in Appendix II-C, we can verify that an upper bound on the
sum DoF is strictly less than K times the individual DoF for
all p ∈ (0, 1). This class of antenna configurations is not a
necessary condition for attaining collision-free DoF.

E. KM ≤ N

From M < N , we get the individual DoF of pM .
From KM ≤ N , min(iM,N + L) = iM and iM ≤

min(iM + L,N) for all integers i ≤ K. Thus, we get the
sum DoF of

∑K
i=1 PK,p(i)iM = K(pM).

This class of antenna configurations is the necessary and
sufficient condition for attaining collision-free DoF for all
p ∈ (0, 1).

F. N < KM ≤ N + L and L ≥ 1

From M < N + L, pmin(M,N + L) = pM . Thus, we
get the following individual DoF.

d ≤ min {pM, pmin(M + L,N) + (1− p)min(L,N)} .
When M ≤ N , pM is active for all p ∈ (0, 1). Let f(p) =
pM−{pmin(M+L,N)+(1−p)min(L,N)}. This function
is continuous. When M > N , since f(0) < 0 and f(1) > 0,
by the intermediate value theorem, there always exists pi ∈
(0, 1) such that f(pi) = 0. Thus, for 0 < p < pi, pM is
active.

From KM ≤ N +L, min(iM,N +L) = iM for all non-
negative integers i ≤ K. Thus, we get the following sum
DoF.

K∑
k=1

dk ≤ min

[
K(pM),

K∑
i=0

PK,p(i)min(iM + L,N)

]
.

Let f(p) = K(pM)−∑K
i=0 PK,p(i)min(iM +L,N). This

function is continuous. Since f(0) < 0 and f(1) > 0, by the
intermediate value theorem, there always exists ps ∈ (0, 1)
such that f(ps) = 0. Thus, for 0 < p < ps, K(pM) is active.

Suppose pi < ps. Then, for pi < p < ps, K times the
individual DoF of K{pmin(M+L,N)+(1−p)min(L,N)}
is strictly less than the sum DoF of K(pM). This is a
contradiction, since both the individual DoF and the sum
DoF are achievable. Thus, ps ≤ pi.

When M ≤ N , for 0 < p < ps, K times the individual
DoF of pM is less than or equal to the sum DoF of K(pM).
For ps ≤ p < 1, the sum DoF of

∑K
i=0 PK,p(i)min(iM +

L,N) is strictly less than K times the individual DoF of
pM .

When M > N , for 0 < p < ps, K times the
individual DoF of pM is less than or equal to the sum
DoF of K(pM). For ps ≤ p < pi, the sum DoF of∑K

i=0 PK,p(i)min(iM +L,N) is strictly less than K times
the individual DoF of pM . For pi ≤ p < 1, the sum DoF
of
∑K

i=0 PK,p(i)min(iM +L,N) = (1− p)K min(L,N)+
{1− (1−p)K}N is strictly less than K times the individual
DoF of pN + (1− p)min(L,N).

In summary, this class of antenna configurations is the
necessary and sufficient condition for attaining collision-free
DoF for p ∈ (0, ps) where ps ∈ (0, 1).

In conclusion, KM ≤ N + L is the necessary and
sufficient condition for attaining collision-free DoF for p ∈
(0, p∗) where p∗ ∈ (0, 1]. p∗ = 1 if and only if KM ≤ N .
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